How to make sweet stevia sweeter: green technology of cold plasma

VYTAUTAS MAGNUS UNIVERSITY MCMXXII

Rasa Žūkienė Faculty of Natural Sciences, Dept. of Biochemistry Vytautas Magnus University, Lithuania

Steviol glycosides (SG) of Stevia rebaudiana

Stevioside (Sevt) and **rebaudioside A (RebA)** are the most abundant steviol glycosides **(SGs)** responsible for the sweetness of stevia.

As compared to **Stev**, **RebA** has an additional glucose monomer that gives it a higher sweetening potency and therefore is the most preferred component of the stevia leaf extracts. **RebA** also lacks the bitter aftertaste characteristic to **Stev**.

Backbone structure of steviol glycosides

Rebaudioside A

More sweet No bitter aftertaste

Stevioside

Sweetness of SG

	R ¹	R ²	R ³	RS ^a	QT ^b
stevioside (1)	β–D–Glc	Н	Н	143	0
rebaudioside A (2)	β–D–Glc	β–D–Glc	Н	242	+2
rebaudioside C (3)	α–L–Rha	β–D–Glc	Н	nd	-1
rebaudioside D (4)	β–D–Glc	β–D–Glc	β–D–Glc	221	+3
rebaudioside E (5)	β–D–Glc	Н	β –D–Glc	174	+1
dulcoside A (6)	α−L−Rha	н	Н	nd	-2

^aRS: relative sweetness to sucrose, nd: not determined ^bQT: quality of taste, +: better, -: worse

There are at least 38 steviol glycosides identified in stevia to date (Libik-Konieczny et al, 2021).

Ohtani K, Yamasaki K. Methods to improve the taste of the sweet principles of *Stevia rebaudiana*. In *"*Stevia. The genus *Stevia"*. Ed. Kinghorn AD, 2002. ³

SG distribution in stevia

SD – short day (app. 8 h), LD – long day (app. 16 h)

Ceunen S, Geuns JMC. Steviol Glycosides: Chemical Diversity, Metabolism, and Function. J. Nat. Prod. 2013, 76, 1201–1228. dx.doi.org/10.1021/np400203b

Subcellular location SG biosynthesis in stevia

SGs functions: against plant pests and herbivores?

Grasshopper Valanga irregularis

Red spider mite *Tetranychus urticae*

Guinea pig Cavia porcellus

Stevia rebaudiana

Feeding:

=Negative

=Neutral

(feeding mechanism that avoids chlorenchyma cells that contain SGs)

=Positive

DOI: 10.1021/acs.jnatprod.8b00958 J. Nat. Prod. 2019, 82, 1200–1206

SG metabolism in human body

Bacteroides species are primarily responsible for the hydrolysis of steviol glycosides (β -glycosidic bond) in the gut via their β -glucosidase activity.

The released sugar moieties are not absorbed and are most likely quickly utilized by the gut microbes as an energy source, thus making it a **zero-calorie sweetener**.

More than a sweetener: SG as drug candidates

Antidiabetic action:

- In diabetic rats, Stev (0.2 g/kg IV) decreases glucose blood levels and increases insulin responses and reactions to an intravenous glucose tolerance test (IVGT);
- RebA increases insulin production in isolated murine islets of Langerhans depending on extracellular Ca²⁺ concentration;
- SGs increase the glucose intake in rat fibroblasts, etc.

Antihypertensive activity:

- Stev triggers vasorelaxation via inhibition of Ca²⁺ reflux into the blood vessel;
- Stev has selective antihypertensive effect no evidence of a hypotensive effect in humans with normal arterial pressure levels, etc.

Anti-inflammatory property:

- Stev inhibits NF-κB, a transcription factor which controls expression of inflammatory cytokines;.
- Stev enhances the innate immune system, etc.

More than a sweetener: SG as drug candidates

Antioxidant activity:

- Mixture of SGs augment the concentration and activity of CAT and SOD;
- Stev and RebA effectively control lipoperoxidation and protein carbonylation in a fish model;
- Stev prevents oxidative DNA damage in the livers and kidneys of a type 2 diabetes murine model.

Anticancer action:

- The activity of tumor promoter TPA is successfully inhibited with Stev in a murine skin-cancer model;
- Stev reduces mammary adenoma incidence in F344 rats, etc.

Antidiarrheal activity:

- Stev controls intestinal smooth muscle contraction;
- SGs demonstrates antibacterial action on *Escherichia coli;*
- SGs impede binding of rotavirus to host cells, etc.

Effect on gut microbiota:

• In vitro and in vivo studies have shown no influence of SGs on gut microbiota growth.

Goals of cold plasma application in stevia

- to increase biosynthesis of SGs
- to increase SGsenriched biomass
- to increase
 biosynthesis of other
 bioactive metabolites
 (i.e. antioxidants)
- To increase resistance to abiotic/biotic stressors and diseases

What is cold plasma (CP)?

Non-thermal plasma or cold plasma is a non-equilibrium gas discharge plasma, consisting of:

- charged particles, such as ions, free electrons,
- neutral particles, including gas molecules, free radicals,
- UV photons.

Machala et al 2019 J. Phys. D: Appl. Phys. **52** 034002¹¹

Conventional methods for SGs biosynthesis stimulation

- Breeding
- Fertilizers
- Biofertilizers/growth activators
- Phytohormones
- Nanoparticles
- Cultivation conditions (photoperiod, temperature, soil, etc.)

Post-harvest technologies:

- Drying and extraction conditions
- Enzymatic conversion (i.e. Stev to RebA)

Factors contributing to CP-induced effects

Experimental models

Low-pressure CP (1)	Atmospheric-pressure DBD CP				Low- pressure CP (2)	
1. Potential of CP	2. Potential of different CP types	3. Kinetics of CP-induced changes		5. Impact of cultivar		
					6. Impact of soilless cultivation	
Soil					Aeroponics	

1. Experimental setup for seed treatment with

CP

<u>CP treatment</u>: > 5.28 MHz air plasma, > gas pressure - 40 P > the specific RF power - 0.1 - 0.6 W/cm³ > exposure - 2, 5, 7 min

- 1 dielectric container with seeds,
- 2 inductor,
- 3 RF generator,
- 4 powered electrode,
- 5 grounded electrode,
- 6 vacuum chamber,
- 7 Petri dish with seeds,
- 8 window,
- 10, 11 voltmeters,
- 12 thermistor vacuum gauge.

B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus

CP (CC) effect on germination in vitro, cv. "Criolla"

CP increased germination rate, yield and development of sprout roots

CP (CC) effect on Stev and RebA

Pre-sowing seed treatment with CP induces **increase** in the amount of **steviol glycosides** in *S. rebaudiana* cultivar **"Criolla"**:

- 1.5-fold increase in Reb A amount,
- up to **7-fold** increase in Stev amount (5min) (and up to 11-fold in EMF10).
- however, CP decrease RebA/Stev ratio.

CP (CC) effect on RebA/Stev ratio

RebA/Stev ratio is important for taste properties when the mixture of SGs is used as a sweetener: the higher the ratio, the better the taste. 1 to 1 ratio is already acceptable.

CP and EMF effect on total phenolics, flavonoids and antioxidant activity

CP7 and EMF10 decreased total phenolics concentration 2.2 and 1.8-fold, respectively.

The amount of total phenolics strongly correlates with radical scavenging activity ($R^2 = 0.9965$).

* - all changes are statistically significant as compared to control, p <0.05 19

Biosynthetic pathways of terpenoid and flavonoid/polyphenols

Possible explanations of the opposite effects on biosynthesis of SGs and phenolics:

- Competition between MEP and phenylpropanoid pathways for the common precursor phosphoenolpyruvate
- DMAPP can be used for the synthesis of both flavonoids and terpenoids
- Certain transcription factors coordinate metabolic activities between the flavonoid and terpenoid biosynthetic pathways

DAHP, 3-deoxy-D-arabino-heptulosonate 7phosphate; DMAPP, dimethylallyl diphosphate; MEP, methyl-erythritol phosphate.

20

Judickaite et al. Plants 2022, 11, 611.

CP (CC) effects in Stevia rebaudiana

Judickaite et al. Plants 2022, 11, 611. 21

2. CP (AP-DBD) equipment

Experimental setup for seed treatment with CP (AP)

at Vytautas Magnus University, installed by prof. Shiratani M. and prof. Koga K. from Kyushu University, Japan.

CP treatment:

- ≻Discharge voltage 9.2 kV
- ≻Discharge current 0.2 A
- ≻Discharge power density 1.49 W/cm²

Dielectric-barrier discharge (DBD) plasma

Sarinont et al. Arch Bioch Biophy, 2016, 605, 129-140. 22

CP (AP-DBD) equipment

Temperature of electrodes must be controlled by choosing optimal treatment-break mode.

CP (DBD) effect on Stev and RebA amount

The optimal **2-min** pre-sowing seed treatment with CP (DBD) induces **increase** in the amount of **steviol glycosides** in *S. rebaudiana*:

- 2-fold increase in rebaudioside A amount,
- 14% increase in stevioside amount, 37% increase in RebA+Stev amount.
- **1.7-fold** increase in RebA/Stev ratio.

CP (DBD) effect on total phenolics, flavonoids and antioxidant activity

25

CP decreased total phenolics concentration 2.4-fold and it negatively correlates with increased Stev amount.

Principle component analysis

Morphometric parameters (dry leaf mass, the number of leaves, plant height) and the concentration of **RebA** and **Stev**, **RebA/Stev** Morphometric parameters (dry leaf mass, the number of leaves, plant height) and biochemical variables (TPC, TFC, AA).

Correlation circles

Each measured parameter was plotted against first two of the principal components (PC1 and PC2) and was shown as a vector, which signals the combined strength of the relationships between the variable and whether these associations are positive or negative:

- If they are pointing in **the same direction**, then they are **highly correlated**;
- If they are **orthogonal**, they are **unrelated**;
- If they are pointing in **opposite directions**, they are **negatively correlated**.

The correlation circles of the **morphometric parameters** (dry leaf mass, the number of leaves, plant height) and the concentration of **RebA** and **Stev**, **RebA/Stev**

Correlation circles (morphometry&SGs)

The correlation circles of the **morphometric parameters** (dry leaf mass, the number of leaves, plant height) and the concentration of **RebA** and **Stev**, **RebA/Stev**

Control	strong positive correlation plant height-RebA, RebA/Stev			
	strong positive correlation number of leaves-leaf mass			
СР	weaker positive correlation plant height-RebA, RebA/Stev			
	weaker positive correlation number of leaves-leaf mass			
CP2	negative correlation plant height- RebA+Stev			
Not offootod	strong a positive correlation Date & Date & /Story			

Not affected strong positive correlation RebA-RebA/Stev strong opposite correlation leaf mass-Stev

Correlation circles (morphometry&TPC, TFC, AA)

The correlation circles of the **morphometric parameters** (dry leaf mass, the number of leaves, plant height) and biochemical variables (**TPC, TFC, AA**).

Control strong opposite correlation plant height&number of leaves-TPC

CP5, CP7 diminish the correlation plant height&number of leaves-TPC strong positive correlation TPC-AA

Not affected strong positive correlation leaf mass-TFC

3-4. Experimental scheme of CP (DBD) effect kinetics study

CP (DBD) effect on SG concentration kinetics

CP (DBD) effect on stevia morphology (8 weeks)

No statistically significant difference in plant height after 8 and 12 week-growth, but leaf mass was slightly increased in CP2 and decreased in CP5 and CP7 groups

Vegetatively propagated stevia

Vegetatively propagated stevia (8 weeks)

Too short day (light) time? Too late cutting time/ vegetation state?

CP (DBD) effect in vegetatably propagated stevia

5. Aeroponics

Baltic Freya

https://balticfreya.com/

DBD5+Aeroponics (pilot)

DBD5 + Aeroponics (pilot)

Group	Lenght, cm		Fresh weight, g			Dry matter, %		
	Stem	Roots	Leaves	Stem	Roots	Leaves	Stem	Roots
Control	9.25±0.75	33.50±3.50	13.99±1.35	2.70±0.67	9.34±0.27	16.56±0.37	13.72±0.58	10.53±1.09
DBD	8.00±2.50	27.25±0.25*	5.83±0.71*	1.03±0.16*	1.57±0.30*	23.95±0.56*	17.97±1.33*	12.79±0.59*

Although DBD treatment stimulated biosynthesis/accumulation of SGs per unit of dry or fresh leaf material, however, biomass growth was inhibited, plants were smaller, and SGs yield per plant or area unit was 35% lower.

CP equipment

Experimental setup for seed treatment with CP (LP CC)

at Vytautas Magnus University, installed by prof. Shiratani M. and prof. Koga K. from Kyushu University, Japan.

DBD or CC + Aeroponics

СР

DBD or CC + Aeroponics

CC

- decreased leaf DW by app. 30%
- didn't change RebA and Stev, but increased RebA/Stev ratio 0.43 (control) up to 0.71
- increased TPC (1.6-2.4-fold), TFC (40-55%) and AA (17-52%).

DBD

- Increased leaf DW by 30-83%
- decreased SG concentration by 34-51%
- SGs amount per plant or area unit was 21% higher in DBD5
- decreased AA, didn't change TPC and increased TFC (20%)

2 cultivars + soil

Conclusions from different experimental systems

- SGs were increased by seed treatment with low-pressure and DBD plasma.
- SGs were increased in different cultivars/cultigens.
- The effect was persistent at least for 14 weeks.
- More studies are required to evaluate the possibility of enhanced trait transfer by vegetative propagation by adjusting cutting time, growing conditions or cultivar selection.
- In older (3-year-old) seeds CP effects were weaker
- CP treatment combination with aeroponics does not stimulate SGs biosynthesis but increases TPC, TFC and antioxidant activity. However, CC inhibits the growth but increases the taste quality of SGs.

Aknowledgements

Baltic Freya

Gediminas Kudirka

B. I. Stepanov Institute of Physics Irina Filatova. Veronika Lyushkevich

Vytautas Magnus University:

Vida Mildažienė Zita Naučienė Laima Degutytė-Fomins Augustė Judickaitė

Students: Augustė Judickaitė Augustinas Andziulis Erika Endriulaitytė Justinas Venckus Emilija Jankaitytė

Kyushu University, Japan Masaharu Shiratani Kazunori Koga

