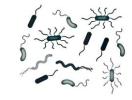
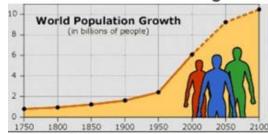
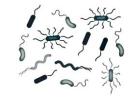

Cold Plasma for Fungal Decontamination of Buckwheat Seeds

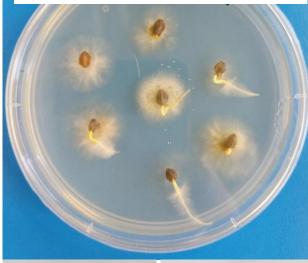


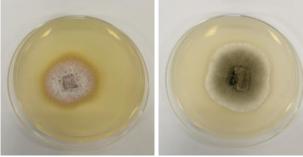
Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia


jure.mravlje@bf.uni-lj.si

I. Plasma for Decontamination of MO


- Why CP for decontamination of seeds?
 - ↑ world population ~10 mrd by 2050 (FAO, UN)
 - - Negative impacts on environment
 - Amount of arable land = limited and declining
 - \downarrow use of pesticides and artificial fertilizers
 - effects on human health (and environment): Hodgkinson's disease, lymphoma, Parkinson's disease, endocrine disorders, respiratory in reproductive disorders, cancer...
 - Key challenge in 21st century: **†efficiency, ↓losses**
 - Ecological and sustainable methods for decontamination'

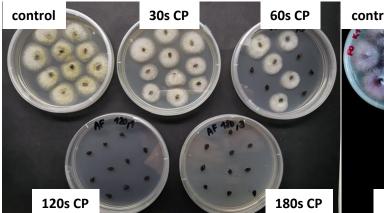


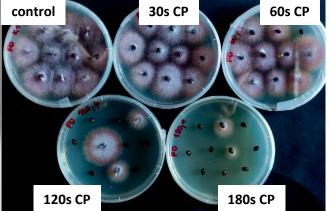

I. Plasma for Decontamination of MO

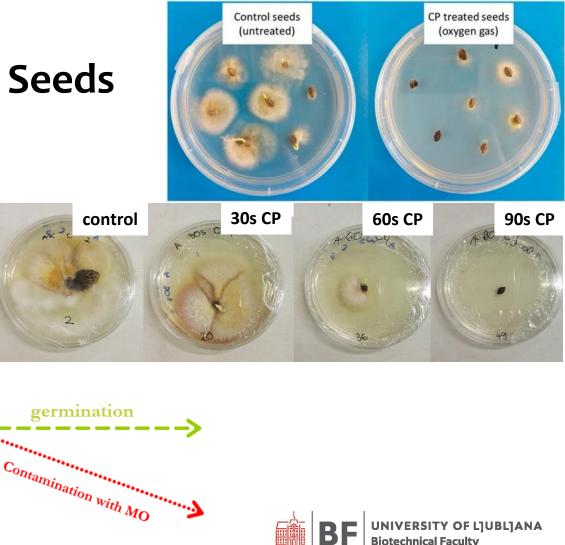
- Fungi = Nr. 1 concern in plant production (responsible for more than 70% of all plant diseases worldwide)
 - Cereal grains = the most important global food source

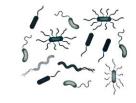
 - Contamintaion:
 - on field ("field fungi") or
 - during storage ("**storage fungi**") (Christensen, 1957)
 - Secondary metabolites mycotoxins: harmful for health of human and animals (acute toxicity, genotoxic, mutagens, cancer...)
 - Alternaria, Fusarium, Penicillium, Aspergillus
 - Contaminated seed material = potential primary source of plant diseases
 - Preventing fungal infections on seeds/grains = key for providing global food security!!


Grains from ecological production after 5 days of cultivation on PDA

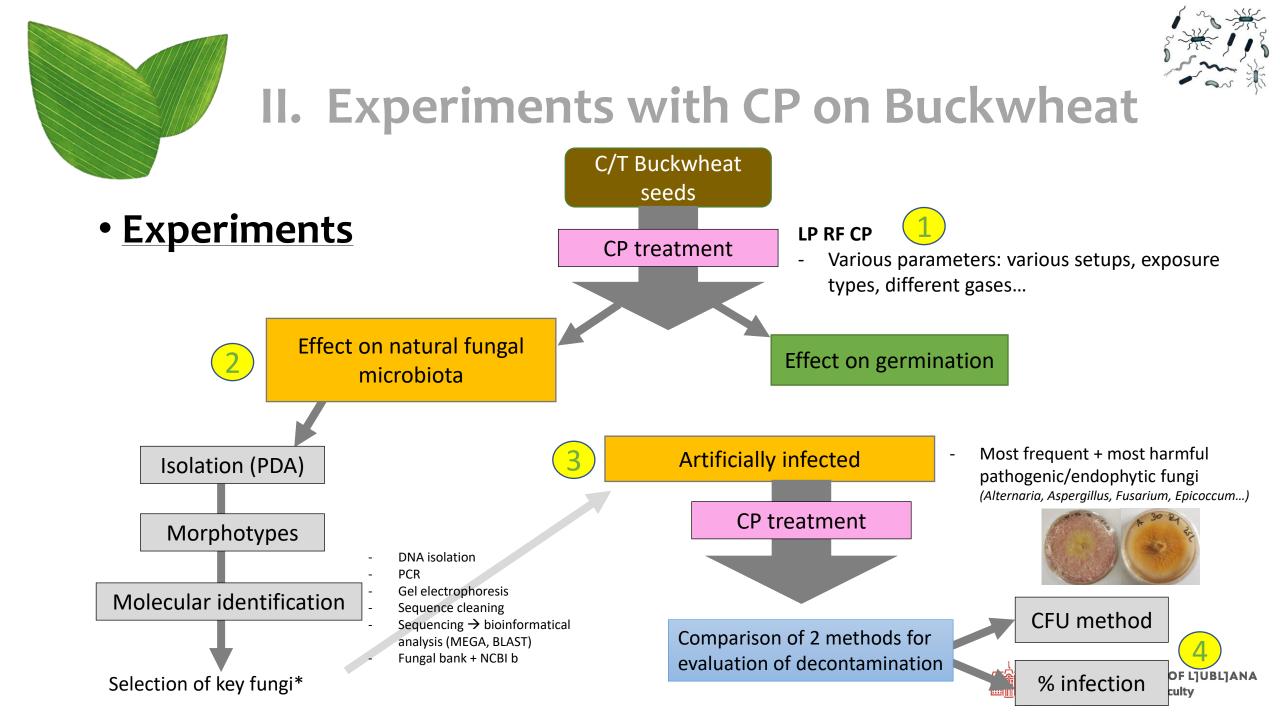






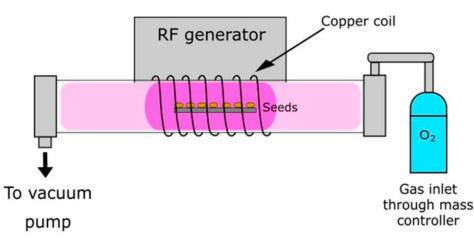

I. Plasma for Decontamination of MO

- Basics of CP Decontamination of Seeds
 - Native fungal microbiota (natural fungal communities)
 - Artificially contaminated seeds
 - Effect on selected fungal species/isolates



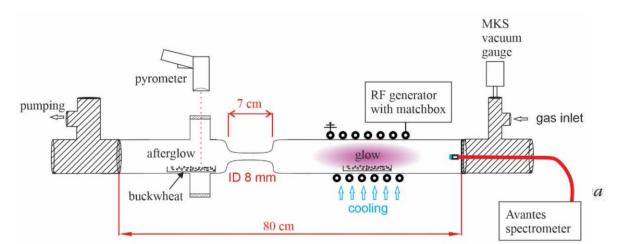
II. Experiments with CP on Buckwheat

- CP Decontamination of Buckwheat grains
- Buckwheat alternative crop ("pseudocereal")
 - Low demands → organical farming ("eco-friendly")
 - No gluten, ↑ nutritional value (proteins, polyphenols)
 - Traditional, local, "functional" food
 - **Common buckwheat** (Fagopyrum esculentum Moench)
 - Tartary buckwheat (Fagopyrum tataricum Gaertn.)
 - History:
 - First mentions in 15th century
 - For food (flour, porridge): Janez Vajkard Valvasor famous book Slava vojvodine Kranjske (1689)
 - 1816 ("year without summer" volcano eruption): year of hunger in Slovenia (whole Europe) → Žiga Zois introduces grain of Tartary buckwheat (from Czechia)


II. Experiments with CP on Buckwheat

<u>CP reactors</u>

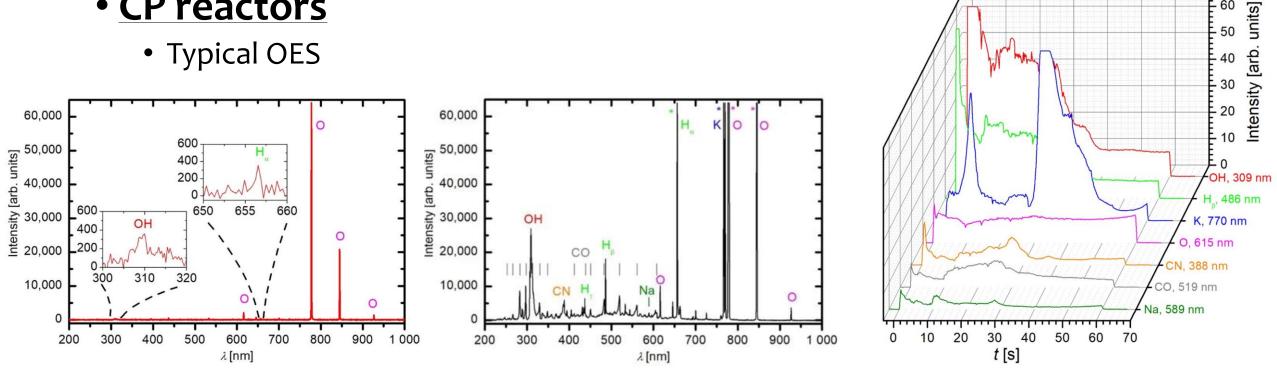
• Powerful RF oxygen plasma (reduced pressure)


A custom-made large-scale (tube length ~2 m, inner diameter ~0.2 m) Working pressure ~50 Pa, RF gen. 27.12 MHz, power 1500 W (PD = 30 W/L), flow rate 202 sccm 99,99% oxygen gas Mravlje et al. (2021) Plants.

(DOI: 10.3390/plants10050851)

A custom-made small-scale (tube length ~80 cm, inner diameter ~4 cm) Working pressure ~50 Pa, RF gen. 13.56 MHz, power 1500 W (PD = **7000** W/L), flow rate 60 sccm 99,99% oxygen gas Mravlje et al. (2022) Plants.

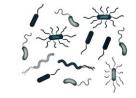
(DOI: 10.3390/plants11101366)



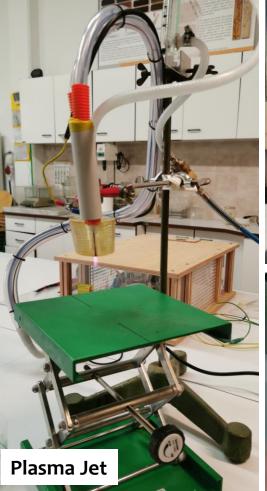
60

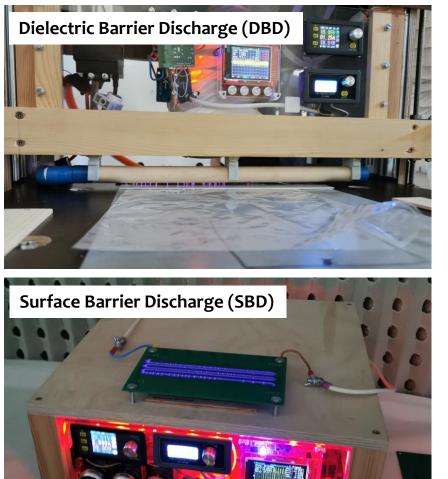
50

II. Experiments with CP on Buckwheat


- CP reactors
 - Typical OES

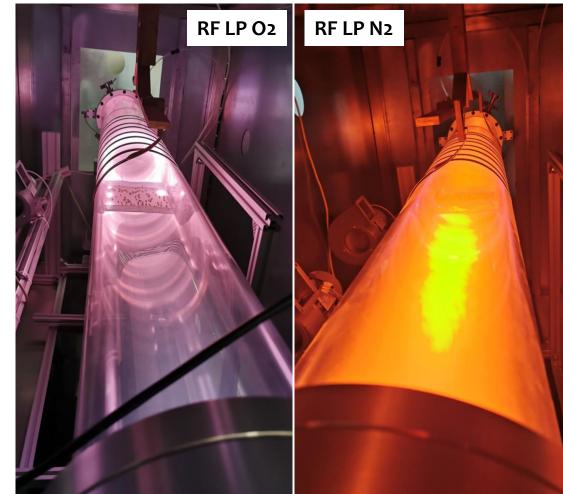
Mravlje et al. (2022) Plants. (DOI: 10.3390/plants11101366)

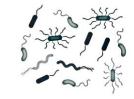




II. Experiments with CP on Buckwheat

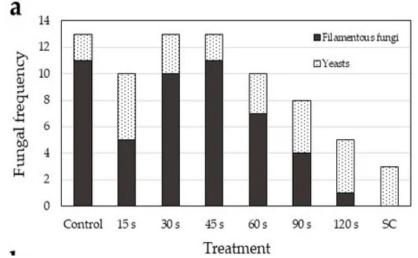
AP plasmas

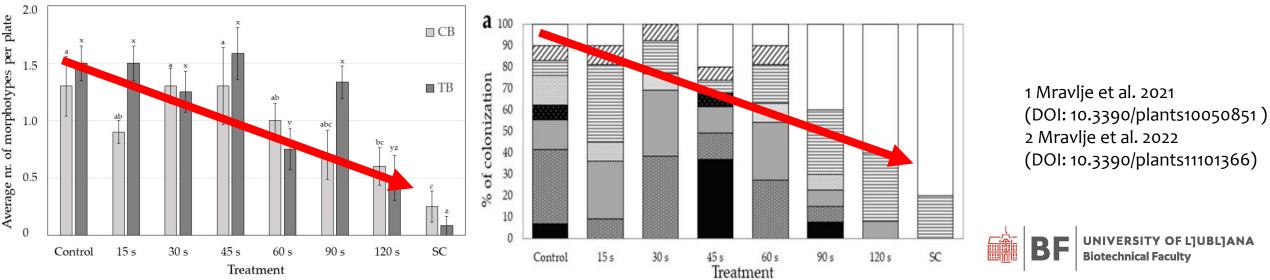

Biotechnical faculty, University of Ljubljana (Dept. of wood science)

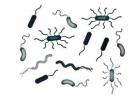


LP plasmas

Josef Stefan Institute (prof. Mozetič)

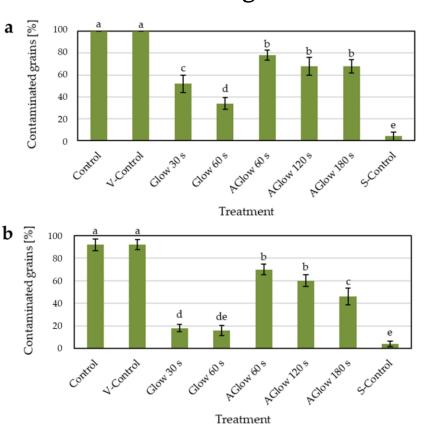

III. Results: Natural Microbiota

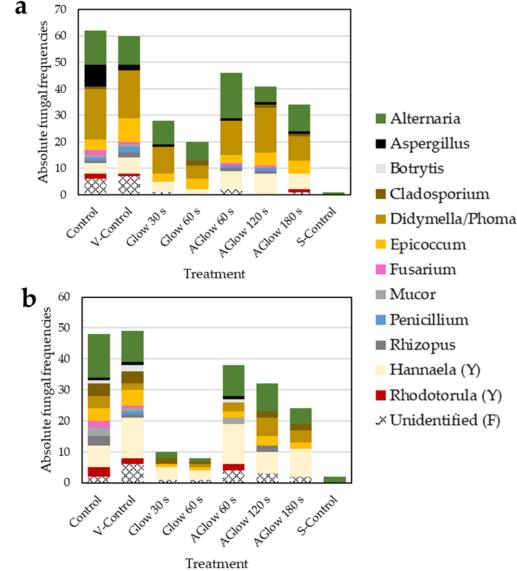

1,2


1,2

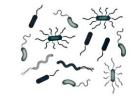
Natural fungal communities

- Reduction in fungal frequency and diversity
- More effective for FF than yeasts
- Longest exposures comparable to classical S



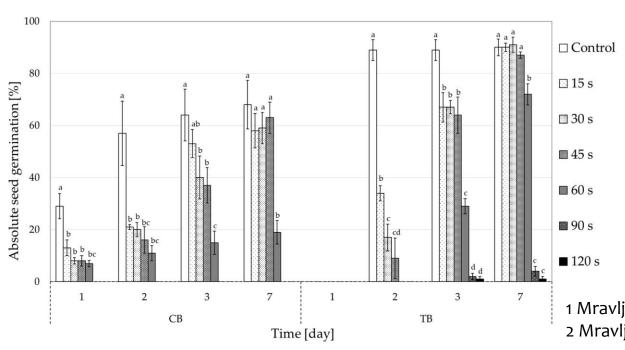

III. Results: Natural Microbiota

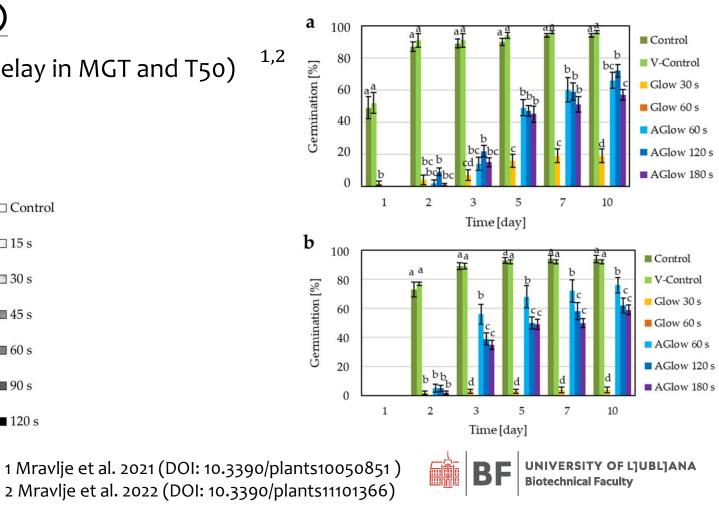
2


Natural fungal communities

Glow more effective than afterglow

1 Mravlje et al. 2021 (DOI: 10.3390/plants10050851) 2 Mravlje et al. 2022 (DOI: 10.3390/plants11101366)

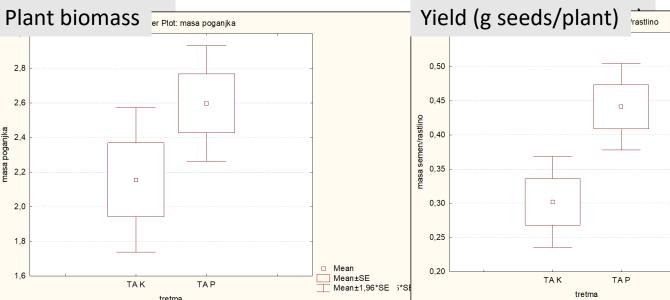




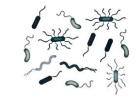
III. Results: Germination

• Effect on germination 🛞

- - effect on germination (\downarrow %, delay in MGT and T50)
- Afterglow less than glow
- Effect of species or reactor ???

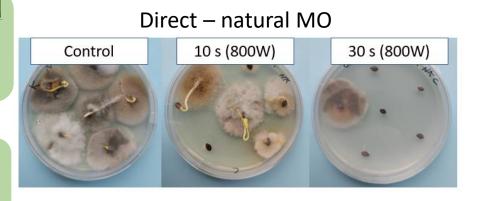


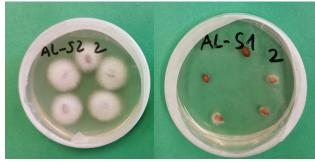
III. Results: Germination

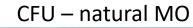

• Effect on germination in the field studies

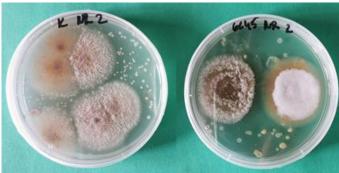
- Neutral or even positive!
 - Less % emerged plants / m2
 - ↑ yield (g of grains/plant)
 - Growth (+ trend)
- Plasma does the "selection"???

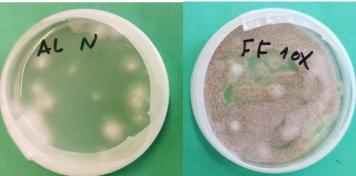





IV. Evaluating decontamination efficacy


Methods/Techniques for evaluation


- Direct plating method
 - Infection rate,
 - infection degree
- Indirect method
 - CFU per g


Direct – artificial MO

CFU – artificial MO

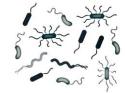
IV. Evaluating decontamination efficacy

Methods/Techniques for evaluation

Literature review

Table 1. An overview of experiments studying the effects of cold plasma on fungal decontamination in various plant species. AI: Artificially infected. NO: naturally occurring. CP: cold plasma. LP: low-pressure. AP: atmospheric-pressure. SMD: Surface micro-discharge. FB: fluidized bed. DCSBD: Diffuse Coplanar Surface Barrier Discharge. RF CC: radio-frequency capacitively coupled. (S)DBD: (Surface) Dielectric Barrier Discharge. CDPJ: Corona Discharge Plasma Jet. P: power. F: frequency. V: voltage. SPD: surface power density. PVD: power volume density. TT: treatment time. NT: not tested.

Fungal Species	Seed Type	Plasma Source and Properties	Gas Type and Exposure Time	Key Findings	% of Germination	Ref.
AI Asporgillus spp. and Ponicillum spp.	Tomato (J. poperscom escalentum), wheat (Trificam dunum), bean (Rescolus stulgaris), chick pea (Cievre mich stum), soybean (Cilycine mez) barley (Hordeam realgare), cat (Arona satira), rye (Sceale cread), lentil (Lens culturis), and corn (Zea mays)	LP CP (500 mTorr); 'P: 300 W; F: 1 kHz; V: 20 kV	Air gas and SF ₆ ; 5-20 min	Significant reduction to below 1% of initial fungal load	No significant effect on wheat and bean seeds	6
AI Aspergillus parasiticus	Hazelnuts (Corylus ardiane), peanuts (Arachis hypogaea) and pistachio nuts (Pistacia vera)	LP CP (500 m Torr); P: 300 W; P: 1 kHz; V: 20 kV	Air gas and SF ₆ : 1-20 min	Air plasma 1-log reduction of initial load, SF ₆ plasma more effective with app. 5-log decrease (after 5 min TT)	NĨ	[70]
NO microbiota	Chickpea (Cicer arietinum)	AP SMD CP; SPD: 10 mW/cm ² ; V: 5-17 kV	Ambient air; 0.5–5 min	Significant reduction of 1-2 log of microbial contamination	Increased up to 3 min TT	[4]


- Orange native seed microbiome
- Red artificially contaminated seeds
- Green direct plating
- Blue CFU (indirect) method

© Mravlje et al., 2021, Journal of Fungi, 7(8), 650 https://doi.org/10.3390/jof7080650

Fungal Species	Seed Type	Plasma Source and Properties	Gas Type and Exposure Time	Key Findings	% of Cermination	Ref.
AI Aspergillus flavus and A. parasiticus	Hazelmuts (Corylus avellane)	AP FB CP; P: 460-655 W; F: 25 kHz; V: 5-10 kV	Air gas and N2; 1–5 min	Significant reduction of app. 4-log (CFU/g) after 5 min of air gas plasma TT	Nť	[83,8-
Al Fusarium circinatum (pine pest)	Pino (Pinus radiata)	AP DCSBD CP; F: 14 kHz; V: 10 kV	Air gas; 5-300 s	Reduction of seedborne pathogens (14-100%)	No significant effect	[85]
NO microbiota and Al Fusarium ni vale, F. cubnorum, Trichothecium roseum, A. flavus, A. clavatus	Wheat (Trèicum assissum)	AP DCS8D CP; PVD: 100 W/cm ³ ; P: 400 W	Ambient air; 10-600 s for NO microflora; 1-300 s for AI fungi- infected seeds	Increased inhibition of microflora with increased treatment time; Yotal devitaliza- tion of NO filamentous fungi after 120 s TT	Increased up to 40 s TT, then decreased	[18]
NO microbiota and AI A. flavus, Altornaria alternata, F. culmorum	Maize (Zea mays)	AP DCSBD CP; PVD: 80 W/cm ³ ; P: 400 W	Ambient air; 60–300 s	Total devitalization of NO bacteria after 60 s and NO fungi 180 s TT	No significant effect up to 120 s TT, then decreased	[51]
NO fungi (Fusarium, Alternaria, Stonphylium)	spring barley (Hordcon volgare), blue lupine (Lupinus angust folius), soy (Glycine soja), and field pea (Pisan arvense)	AP RF CC CP; PVD: 0.6 W/cm ³ ; F: 5.28 MHz	Air gas; 2–20 min	fungal infection; the most effective TT at 10 and 15 min	Little enhancement in blue lupine and field pea	[86]
NO fungal microbiota	Wheat (Tritician aestivium)	AP CP; F: 100 Hz-83 kHz; V: 8 kV	Air gas; 3–30 s	Reduction of fungal colonies on wheat grains at the optimum 10 s TT	No significant effect	[87]
NO microbiota	Sweet basil (Ocimum builicum)	AP SDBD CP; SPD: 80 mW/cm²; F: 5 kHz	Humid air; 10–600 s	Significant decrease in microbial load (up to 50% in 300 s TT)	No significant effect	[88]
NO microbiota (molds and yeasts)	Rapeseed (Brasica napus)	AP CDPJ CP; F: 58 kHz V: 20 kV, 58 kHz	Air gas; 0.5–3 min	Reduction by 2-log units compared to initial count	Positive effect up to 1 min TT	[61]
NO bacteria and fungi	Ginsong (Panax ginsong)	AP DBD; F: 60 Hz; V: 120 V	Ar and Ar/O ₂ mixture (80:20); 10 min each day, 3 days in a row	Ar/O ₂ plasma mixture had better bactericidal and fungicidal effect	Positive effect in both mixtures	[89]
NO fungi (molds and yeasts)	Common buckwheat (Fagopyran esculentum) and Yartary buckwheat (E-tataricum)	LP RF CP (50 Pa); P: 1400 W; F: 27.12 MHz	Pure O ₂ plasma; 30-120 s	Reduction of seedborne fungi to below 50% of	No significant effect up to 45 s TT,	[33]

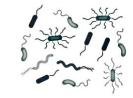
IV. Evaluating decontamination efficacy

Comparison of direct / CFU

 Biological point of view: same seeds (control) → different evaluation method → different results?

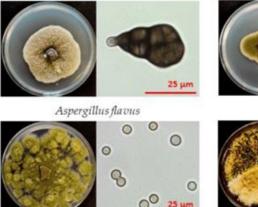
	Direct plating	CFU method
+	Eco-relevance, diversity	Quick, easy eval. and compare (log-reduction)
-	Time, N, experience with fungi (taxonomy)	Developed for bacteria, Misleading?(eco-relev.?)

• Ecological relevance! (diversity, lifestyle: S/E, P)



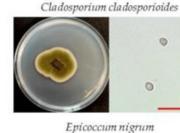
A: direct plating of buckwheat seeds on PDA medium; after 1 week of growth

B: CFU count of buckwheat seeds (1g of seeds suspended in saline \rightarrow diluted); 1 week



V. Comparison of Methods

• Is sensitivity to CP species specific?


• 1st problem = different attachment rate of spores!

Aspergillus niger

Alternaria alternata

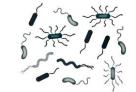
Fusarium fujikuroi

Fusarium proliferatum

Fusarium sporotrichioides

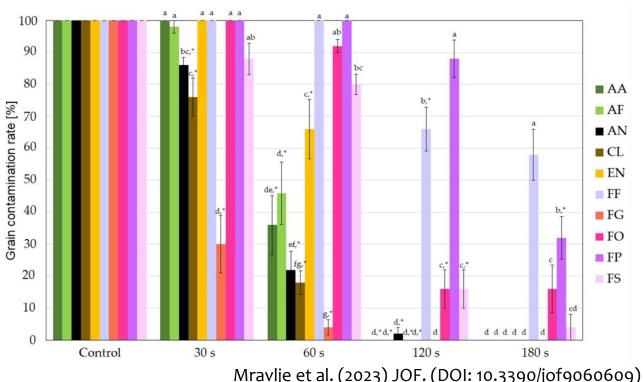
Table 1. Colony forming units (CFU) in control and after different cold plasma treatment (CPT) exposure times for each fungus expressed in log CFU g-1 grains. Different letters (superscripts) indicate statistically significant differences between each fungus's control and respective CPT. AA-Alternaria alternata; AF-Aspergillus flavus; AN-Aspergillus niger, CL -Cladosporium cladosporioides; EN-Epicoccum nigrum; FF-Fusarium fujikuroi; FG-Fusarium graminearum; FO-Fusarium oxysporum; FP-Fusarium proliferatum; FS-Fusarium sporotrichioides.

Fungi	Control	30 s CPT	60 s CPT	120 s CPT	180 s CPT
AA	3.57 ± 0.1 ª	3.21 ± 0.1 ª	0.77 ± 0.8 b	0.0 ± 0.0 c	0.0 ± 0.0 c
AF	4.18 ± 0.1 ª	3.01 ± 0.1 b	0.67 ± 0.7 °	0.0 ± 0.0 c	0.0 ± 0.0 c
AN	4.41 ± 0.0 ª	1.33 ± 0.7 b	1.33 ± 0.7 b	0.0 ± 0.0 b	0.0 ± 0.0 b
CL	3.98 ± 0.0 ª	2.43 ± 0.1 b	0.67 ± 0.7 °	0.0 ± 0.0 c	0.0 ± 0.0 c
EN	3.91 ± 0.1 ª	3.62 ± 0.0 ª	1.33 ± 0.7 b	0.0 ± 0.0 b	0.0 ± 0.0 b
FF	6.34 ± 0.1 ª	5.85 ± 0.1 b	4.99 ± 0.0 c	3.70 ± 0.0 e	4.0 ± 0.1 d
FG	3.58 ± 0.0 ª	0.0 ± 0.0 b	0.0 ± 0.0 b	0.0 ± 0.0 b	0.0 ± 0.0 b
FO	5.68 ± 0.0 ª	5.44 ± 0.0 b	4.50 ± 0.0 °	3.96 ± 0.0 d	2.46 ± 0.1 e
FP	5.94 ± 0.1 ª	5.70 ± 0.1 ª	4.78 ± 0.0 b	2.80 ± 0.1 °	2.93 ± 0.1 °
FS	5.27 ± 0.0 ª	4.40 ± 0.0 ^b	3.99 ± 0.0 °	2.26 ± 0.1 e	2.71 ± 0.1 ^d
	-				



OF L]UBL]ANA

Mravlje et al. (2023) JOF. (DOI: 10.3390/jof9060609)



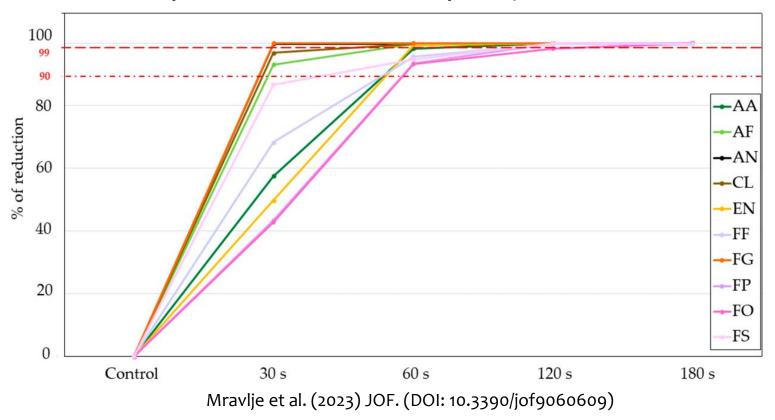
V. Comparison of Methods

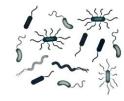
• Is sensitivity to CP species specific?

- 2nd problem = a bit different results,
- Similair trends!

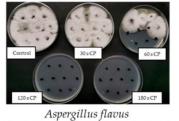
F. graminearum – the most sensitive 🗸

- Larger/multicellular spores → ↑ surface → CP ↑ efficient? other *Fusarium* species microconidia
- Advantage in CP treatment?
 Melanised spores (*Alternaria, Epicoccum*) advantage to some point? Not in LP CP?

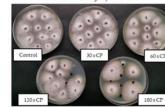


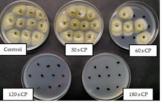


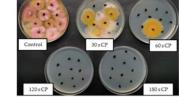
V. Comparison of Methods


• Is sensitivity to CP species specific?

• 3rd problem = how to report your results...

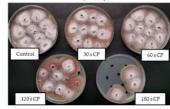


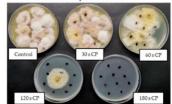

Fusarium fujikuroi

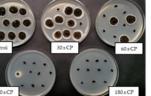


Alternaria alternata

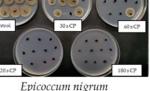
Fusarium graminearun



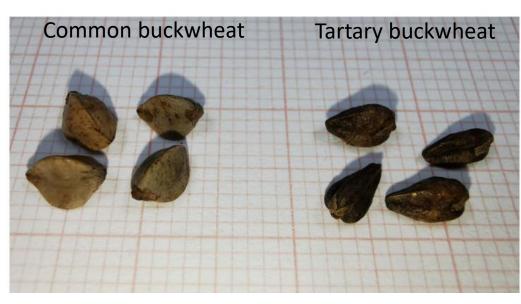

Fusarium oxysporum


Fusarium proliferatum

Fusarium sporotrichioides







·ion

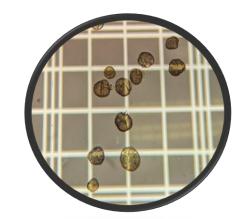
VI. Problems in CP seed decontamination

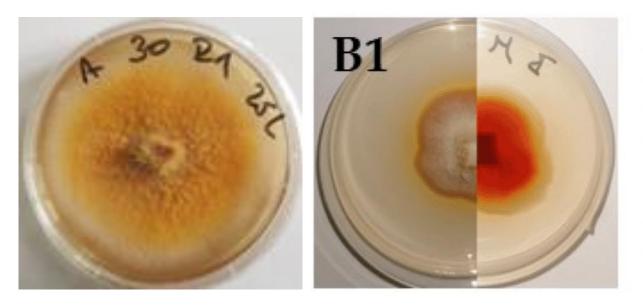
• <u>SEEDS</u>

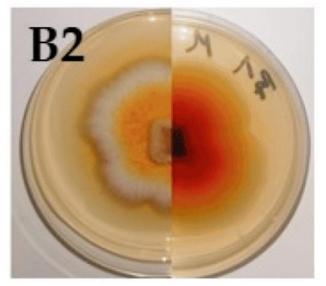
- "Internal":
 - Seed type (species): size, shape, surface, color...
 - Dormancy, vernalization
 - Maturation (seed age) \rightarrow
 - Viability
- "External":
 - Seasonal effect on germination
 - Experimental conditions (besides CP treatment)
 - Light, temperature
 - Storage conditions

• ...

• FUNGI


- COUNTLESS
 - Species → subspecies → strain → ... changing with time! (lab?)
 - Growing conditions
 - Light, temperature, humidity ... growing medium!
 - Growth type:
 - Teleomorph (sexual) / anamorph (asexual stage)
 - Growth stage:
 - Mycelia (hyphae)
 - Spores:
 - Asexual (mitospores): conidia, chlamydospores...
 - Sexual (meiospores): asco-, basidio-, zygospores...





• Example: Epicoccum nigrum

B

UNIVERSITY OF L]UBL]ANA Biotechnical Faculty

Epicoccum nigrum – cosmopolitan fungus, endophyte: medical, industrial and agricultural importance – source of many secondary metabolites.

• And then comes the PLASMA... :O :O :O

• Review Paper JoF, 2021

Journal of Fungi

Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives

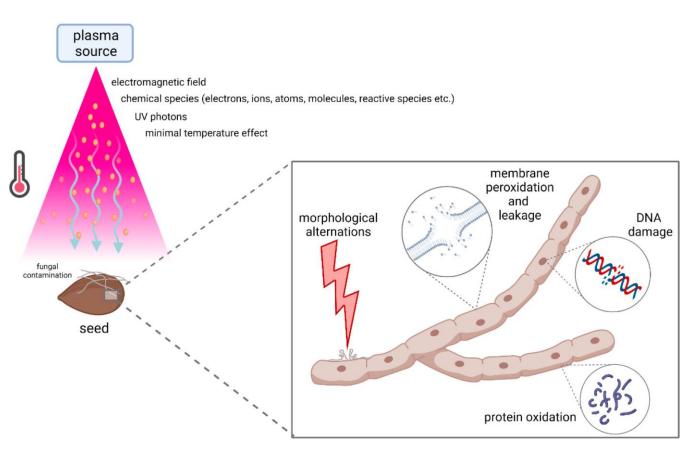
Jure Mravlje^{1,*}, Marjana Regvar¹ and Katarina Vogel-Mikuš^{1,2}

https://doi.org/10.3390/jof7080650

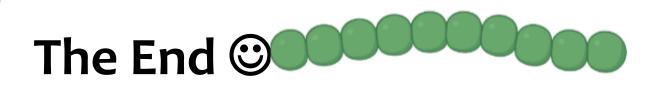
- ¹ Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; marjana.regvar@bf.uni-lj.si (M.R.); katarina.vogelmikus@bf.uni-lj.si (K.V.-M.)
- ² Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence: jure.mravlje@bf.uni-lj.si

Abstract: In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.

Citation: Mravlje, J.; Regvar, M.; Vogel-Mikuš, K. Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J. Fungi 2021, 7, 650.


Keywords: cold plasma; seeds; grains; microorganisms; fungi; agriculture; plant production; food security

• How does CP work on Fungi?



- Plasma apparatus! (properties)
 - Atmospheric / reduced pressure
 - Glow (shorter) / afterglow (safer)
 - Source, feeding gas, operating pressure...
 - PD of plasma
 - MO!
- Non-linear survival curves (complex process)
- Efficient: many cellular targets, complex biological interactions → unlikely resistance mechanisms development
- Thermal effect?
- Different studies different conclusions!

© Mravlje, Regvar & Vogel-Mikuš (2021) DOI: 10.3390/jof7080650

"(Ladies and) Gentlemen, it is the microbes who will have the last word!" (Louis Pasteur)

Acknowledgements

- Prof. dr. Katarina Vogel-Mikuš & prof. dr. Marjana Regvar
- Other colleagues from Laboratory for Plant Physiology, Dept. of Biology, Biotechnical faculty, University of Ljubljana
- Colleagues from "Jožef Stefan" Institute (group of prof. dr. Miran Mozetič)
- Slovenian Research Agency (ARRS) for funding: P1-0212 (Plant Biology), project J1-3014

Literature & Sources

- Brock Biology of Microorganisms, 16th ed. (2021) Pearson Education.
- Campbell Biology, 12th ed. (2021) Pearson Education.
- Plant Pathology, 5th ed. (2005) Elsevier Academic Press.
- All the Articles cited (DOI in text).
- Personal archive (J. Mravlje & colleagues)

