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The molecular network regulating seed germination is complex….



….but mostly relies on a balance beween ABA and GA…



….that responds to environmental and endogenous factors…

…including Reactive Oxygen Species (ROS)



ROS: candidates for being

involved in the sensing of 

environmental conditions 

by seeds



Free radicals:
 At least an unpaired electron

Reactive Oxygen Species

Non radical forms:
 Highly oxidizing

O2
.- Superoxide

.OH Hydroxyl

RO2
. Peroxyl

RO. Alkoxyl

HO2
. Hydroperoxyl

H2O2 Hydrogen peroxide

HOCl- hypochlorique acid

O3 Ozone

1O2 Singlet oxygen

ONOO- Peroxynitrite

Reactive oxygen species (ROS) are highly reactive chemicals formed from O2. ROS are byproducts of the normal 

metabolism of oxygen

H2O2: the most « stable », can cross membranes, 

secondary messenger



Role of ROS in dry seeds



Tomography of Arabidopsis seed:
3D rendering of intercellular air space in the seed

But oxygen can diffuse within dry 

seeds…

Orthodox seeds are anhydrobiotes (MC< 10%) where no metabolism occur

…and continuously generates reactive oxygen species (ROS) 

through non-enzymatic reactions (eg. lipid oxidation)

Stability map of food as a function of water content 
(modified from Labuza et al., 1972)



Species Germination (%)  after storage in

air vacuum CO2 N2

Salvia 61 90 89 91

Pansy 32 83 84 74

Aster 0 62 31 67

Lettuce 81 98 99 99

Onion 7 95 91 94

Ex: Seeds equilibrated at 33 % RH, stored at 5°C

Initial germination 100 %

Duration: 20 years (1987-2007)

Coll. HM Clause, M. Gaudillat

Thus, ROS continuously accumulate in dry seeds with time
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Effect of after ripening on ROS accumulation

After-ripening: a dry storage period that allows the transition from a dormant to a non-

dormant seed
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Effect of after ripening on ROS accumulation
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0.06 g H2O DW-1
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Sunflower seed axes – CeCl3 staining of H2O2

ROSHarvest Death

Dormancy alleviation Aging

Oracz et al. (2007), Bazin et al. (2011)
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Putative target for ROS : proteins and mRNA

Pro-oxidants C
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Oracz et al. (2007) Plant J

Degradation of oxidized protein by proteasome
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Sunflower seeds

Proteins and mRNAs that became specifically oxidized during after-

ripening were negative regulators of germination (eg. ABA synthesis and 

signaling components)



ROS

Germination
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El-Maarouf-Bouteau et al., 2013

Oxidative regulation of seed germination during after-ripening: removal

of positive regulators of seed dormancy

After-ripening
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Regulation of seed germination by ROS



Effect of ROS on seed germination

Bailly (2019) Biochem. J.

Negative effects of ROS often associated

with stress/ageing



ROS are environmental sensors
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But ROS production is also a prerequisite for seed germination
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Germination is associated with ROS 

generation

Hormones involved in germination 

modulate ROS generation

24 h 10°C DCF (2’,7’-dichlorofluorescein) 

No germination Germination

Crosstalk ROS x hormones

El-Maarouf-Bouteau et al. (2015) Plant Cell Environment



Arabidopsis: Germination of dormant and non-dormant Col seeds

Leymarie et al. (2012) Plant Cell Physiology

Germination is associated with ROS  production



In situ localization of superoxide anions and ROS in dormant and non-dormant Col seeds

Leymarie et al. (2012) Plant Cell Physiology

dormant non-dormant

DCFH-DA (2’,7’-dichlorofluorescein) 

NBT



ungerminating dormant seed

germinating non dormant 

seed

ungerminating non dormant 
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The oxidative window: a model for explaining the role of ROS in seed

germination

Bailly et al. (2008) CR Biol 
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Non-dormant seeds, 25°C

A dynamic regulation of ROS 

production at the tissue level



ROS

ABA degradation
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Deciphering the role of intracellular ROS 

trafficking in the regulation of seed

germination



Subcellular mechanisms of ROS signaling: where are ROS coming from (NADPH oxidases ? 

Mitochondria ?) and where « do they go » ? (what are their targets) ?
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Jurdak et al. (2021) New Phytol.



AA 15°C
SHAM 15°C

AA 25°C
SHAM 25°C

H2O  15°C
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production by mitochondria

Role of mETC in response to ethylene

Moller et al. 2001

rotenone (ROT, 5.10-5 M) complex I inhibitor
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antimycin A (AA, 5.10-6 M)complex III inhibitor



H2O C2H4

6 h

Intracellular ROS localization

DCFH-DA Mito-ID

DAPI Merged

Jurdak et al. (2021) New Phytol.
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ROS production is

mitochondrial then

nuclear in ethylene

treated seeds only, 

suggesting retrograde

signaling

Jurdak et al. (2021) New Phytol.



From Hartl and Finkemeier, 2012

ROS

ROS

Jurdak et al. (2021) New Phytol.

Expression of known markers of retrograde

signaling in plants

Ethylene triggered expression of AOX 

(mitochondrial alternative oxidase) and 

ANAC013 (TF)

C2H4

water

C2H4

ANAC013

Seed germination

AOX
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What are the effect of ROS accumulation on chromatin organization ?

Nuclear ROS modify chromatin organization: chromatin decompaction

RHF: relative heterochromatin
fraction

Jurdak et al. (2022) New Phytol.
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Which in turn can modify gene expression



DEGs

hydrogen peroxide catabolism
(12 peroxidases)
Photosynthesis

Cell wall

hydrogen peroxide metabolic process 
Response to hypoxia

Response to heat 
Response to hypoxia
Response to H2O2
Glutathione transferase

Response to heat 
Response to hypoxia
Response to H2O2
Proteasome
HSP20-like chaperone

DOWNUP

ROS accumulation within the nucleus/change in chromatin organization/change in 

gene expression

RNA-seq study of H2O2 treated seedlings



A putative model of ROS trafficking that controls seed germination

Bailly (2023) Advances in Botanical Research (Oxidative Stress Responses in Plants)



Their homeostasis translates internal and external message into a germinative response: 

the oxidative window

ROS downstream mode of action, has to be considered with regards to the other signaling

pathways (ie. plant hormones) but is poorly known

The specificity of cellular response towards the various ROS is not known

To sum-up

ROS play a key role in all steps of seed life, including dry storage

Regulation of seed germination by ROS relies on a complex interplay between cellular 

compartments



Challenges, among others

Epigenetic and seed germination, transgenerationnal effects

RNA metabolism

Crosstalk endosperm-embryo



Deciphering the biological

mechanisms involved in Arabidopsis 

seed dormancy release by cold 

atmospheric plasma 

Co workers

Jonas AugustThierry Dufour



Seeds are at the core of agriculture since the critical step of plant life and crop productivity

is seed germination

But global warming and pesticide restriction will dramatically alter this step and in turn crop

productivity and food safety

Context

New solutions for sustaining seed germination in a changing environment are required:  

Dry plasma approach (also single-step approach) which consists to expose seeds, seedlings

or plants directly to a discharge or post-discharge is increasingly used in agriculture

An urgent need to better understand how can plasmas modify seed biological

properties



A. Motivation du projet
Treatment of dry seeds using an Air Di-electric Barrier Device at Patm

Experimental set-up

Duration the treatment: 15 min, dry seeds

Peak amplitude of the voltage : 7kV at 145 Hz

Power 11.6 W



Dormant seeds

At harvest Arabidopsis seeds are dormant

No/low germination at 25°C in the dark

Biological model: Arabidopsis seed dormancy

Leymarie et al., Plant Cell Physiol, (2012)

Non-dormant seeds

Dry after ripening

weeks-months

Cold Plasma Treatment

Minutes

The mechanisms of seed dormancy alleviation in the dry state (anhydrobiosis) are poorly known: can be studied

by using plasmas



Dormancy alleviation by CAP treatment

August et al. (2023) J of Physics D

CAP treatments release Arabidopsis seed dormancy within 15 min

The efficiency of the CAP treatment relies on seed MC and cytoplasmic viscosity



What are the biological processes triggering this change of seed physiology (alleviation of

dormancy)

How can plasmas have an effect in anhydrobiosis ?

- Structural changes (change of seed physical structure)

- Biological changes: oxidative processes and gene expression
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1. Effect of CAP on seed physical properties

X-ray microtomography on the ANATOMIX beamline of SOLEIL synchrotron (Orsay, France) 

Seed Cross Sections 

100 µm

3D reconstruction



2. Effect of CAP on seed biological properties
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CAP alter oxidative processes within seeds: the oxidative control of seed germination

Bailly et al. (2008)



Evaluation of ROS in embryos by confocal microscopy

Embryo « CTRL »
Moyenne sur 30 embryons par condition

ROS fluorescence with DCFH-DA

CAP induced ROS accumulation within dry seeds  : confirmed the role of ROS in the 

release of dormancy in anhydrobiosis

Mean over 50 embryos/group

Embryo « Plasma »

2. Effect of CAP on seed biological properties



2. Effect of CAP on seed biological properties

PLASMA

CTRL

CAP also modified oxygen-related

processes during germination 
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 Seed dormancy release by cold plasmas is linked with structural changes, oxidative

processes and gene regulation

 Transcriptomic analysis allowed to highlight the biological processes triggered by

plasma on seed dormancy release and confirmed role of ROS and oxygen in plasma

response

 Opportunity to determine molecular markers and pathways related to plasma

treatment, that can be used to evaluate its efficiency

 Our results should help improving the use of CAP treatments on crop species

Conclusion



To sum-up

Mechanisms of seed germination are far from being all known and climate change issues 

require a better knowledge of this process

Plasma treatments are promising techniques for improving seed germination but 

they will require:

- an adaptation of techniques (scale-up)

- better interactions between physicists and seed biologists



Seed Biology Group


