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The molecular network regulating seed germination is complex....
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..but mostly relies on a balance beween ABA and GA...
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..that responds to environmental and endogenous factors...
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ROS: candidates for being

iInvolved in the sensing of

environmental conditions
by seeds



Reactive Oxygen Species

Reactive oxygen species (RDS) are highly reactive chemicals formed from 0O,. ROS are byproducts of the normal

metabolism of oxygen

Free radicals:
= At least an unpaired electron

Non radical forms:
= Highly oxidizing

H,0,: the most « stable », can cross membranes,
secondary messenger
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‘OH Hydroxy!
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Role of ROY in dry seeds
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Orthodox seeds are anhydrobiotes (MC< 10%) where no metabolism occur

But oxygen can diffuse within dry
seeds...

Tomagraphy of Arabidopsis seed:
0 rendering of intercellular air space in the seed
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Thus, ROS continuously accumulate in dry seeds with time

Ex: Seeds equilibrated at 33 % RH, stored at 5°C
Initial germination 100 %
Duration: 20 years (1987-2007)

m Germination (%) after storage in

air vacuum Co, N,
Salvia 61 90 89 91
Pansy 32 83 84 74
Aster 0 62 31 67
Lettuce 81 98 99 99
Onion 7 95 91 94

Coll. HM Clause, M. Gaudillat
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20 years of storage, 5°C, low MC (33 % RH)
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Effect of after ripening on ROS accumulation

After-ripening: a dry storage period that allows the transition from a dormant to a non-
dormant seed

sunflower
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Sunflower seed
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Effect of after ripening on ROS accumulation
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Oracz et al. (2007), Bazin et al. (2011)
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Changes in Hy0, content in axes during after-ripening
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Alleviation of dormancy in the dry state is associated with ROS accumulation
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Putative target for ROS : proteins and mRNA
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ROS generation during dry storage : modification of cell signaling during subsequent seed

\decapping
mRNA 8-OHG - g
5' . \/\/\
3 5'-3' decay
\. 67: 3 | .
3 P-body processing deadenylation
mRNA oxidation \
l mRNA 5" .
\ o . ;
cap M, W‘ sltered
translation
Poly(A) tail —lranslation
\ i

. . ; \. Truncated protein
rotein
After-ripening —>| ROS \p: mioin M i
ranslation

protein oxidation %
\\\‘ Selective alteration of
reduction [

/ protein pattern and

/ % % function
carbonyl % methionine sulfoxide '

Germination

20S o
proteasome disulfide
degradation

g Oxidative regulation of seed germination during after-ripening: removal

of positive regulators of seed dormancy

El-Maarouf-Bouteau et al., 2013

Q SCIENCES
b SORBONNE

UNIVERSITE



Requlation of seed germination by ROS
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Ettect of ROS on seed germination

Table 1 Reported effects of ROS on seed germination

Context Effect Species

| Zn and Arsenic stress negative Anadenanthera peregrina and |

TVIyTacToarton Urinoeava

Germination positive apple
Dormancy alleviation positive apple
(stratification)

| Salt stress negative Arabidopsis |
ABA cross-talk ABA positive regulator of Arabidopsis

rboh and ROS

| Cd Stress negative Arabidopsis |
Mitochondrial functionning positive Arabidopsis
Salt stress positive Arabidopsis
Seed dormancy and iron positive Arabidopsis
deficiency
Germination/ABA negative Arabidopsis
Salt stress/ethylene negative Arabidopsis
Germination/light positive Arabidopsis
Dormancy positive Arabidopsis
Germination/ABA/AIA positive Arabidopsis
Germination ABA GA positive Arabidopsis N [ f f f Ru S f . d
Germination/ABA signalling positive Arabidopsis E g ﬂt IVE E E Bt s u n tE n ﬂ S S ﬂ B I ﬂt E
Dormancy ABA GA positive barley . h / "
Seed germination and positive barley W It Str E S S ﬂ g E I n g
dormancy
Germination/ABA signalling positive barley
Dormancy alleviation positive barley
Germination/GA/NADPH positive barley
oxidase
Germination/NADPH positive barley
oxidase
Dormancy positive Bidens pilosa
Dormancy alleviation positive Bunium persicum
(stratification)
Dormancy alleviation positive Hedysarum scoparium
(stratification)
Germination/endosperm positive lettuce
weakening

| Mutagen agents negative maize |
Dormancy alleviation by positive Mesembryanthemum crystallinum
heat

| Drought and salt stress negative Miscanthus |
Germination/ABA positive pea Bal”y (201 9) BiOChem _]
Germination positive Pea T

| High temperature, drought negative rice |
Stress

S ol H E N (C E S Low phytic acid seed positive rice
SORBONNE il
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ROS are environmental sensors

Markers of seed quality/stress: sunflower germination at low temperature
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But ROS production is also a prerequisite for seed germination

Embryo dormancy of sunflower seeds

Eftect of hormones Effect of ROS: methylviologen
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Crosstalk ROS x hormones
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Arabidopsis: Germination of dormant and non-dormant Col seeds
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Leymarie et al. (2012) Plant Cell Physiology
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In situ localization of superoxide anions and ROS in dormant and non-dormant Col seeds

dormant non-dormant

NBT

DCFH-DA (2’,7’-dichlorofluorescein)

Leymarie et al. (2012) Plant Cell Physiology
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The oxidative window: a model for explaining the role of ROS in seed

germination
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Bailly et al. (2008) CR Biol
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Dynamics of RO production during seed germination

Non-dormant seeds, 25°C

fh)

SORBONNE
UNIVERSITE

DCFH-DA ™ toopm

Bailly (2019) Biochem. J.

shootward region

A dynamic requlation of ROS
production at the tissue level
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o Early time point: sensing of permissive
conditions for germination
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Deciphering the role of intracellular ROS
trafficking in the requlation of seed
germination
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Subcellular mechanisms of ROY signaling: where are ROS coming from (NADPH oxidases 7
Mitochondria ?) and where « do they go » 7 (what are their targets) ?

Effect of ethylene on Arabidopsis seed dormancy release
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Jurdak et al. (2021) New Phytol.
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Role of mETC in response to ethylene
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Intracellular ROS localization

DCFHsDA : Mito-ID
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Jurdak et al. (2021) New Phytol.

ROS production is
mitochondrial then
nuclear in ethylene

treated seeds only,
suggesting retrograde
signaling
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What are the effect of ROS accumulation on chromatin organization ?

GA, light and stratification
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Jurdak et al. (2022) New Phytol.
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Proof of concept: artificial induction of ROS accumulation within nucleus

H,O H,0,

Treatment of 7 d old
seedlings by H,0,
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a 2
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ROY accumulation within the nucleus/change in chromatin organization/change in

RNA-seq study of H,O, treated seedlings
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A putative model of ROS trafficking that controls seed germination
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To sum-up

RON play a key role in all steps of seed life, including dry storage

Their homeostasis translates internal and external message into a germinative response:
the oxidative window

Regulation of seed germination by ROS relies on a complex interplay between cellular
compartments

ROS downstream mode of action, has to be considered with regards to the other signaling
pathways (ie. plant hormones) but is poorly known

The specificity of cellular response towards the various ROS is not known



Challenges, amang others

Epigenetic and seed germination, transgenerationnal effects
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Deciphering the biological
mechanisms involved in Arabidopsis
seed dormancy release by cold
atmospheric plasma
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Context

Seeds are at the core of agriculture since the critical step of plant life and crop productivity
is seed germination

But global warming and pesticide restriction will dramatically alter this step and in turn crop
productivity and food safety

New solutions for sustaining seed germination in a changing environment are required:

Dry plasma approach (also single-step approach) which consists to expose seeds, seedlings
or plants directly to a discharge or post-discharge is increasingly used in agriculture

An urgent need to better understand how can plasmas modify seed biological
properties



Experimental set-up

Treatment of dry seeds using an Air Di-electric Barrier Device at P, _

Thermographic
camera

Dielectric barrier
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) Current probe

CH2 —
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CH3 —><
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Duration the treatment: [3 min, dry seeds
Peak amplitude of the voltage : 7kV at 40 Hz

Power LB W

CH1

High voltage
power supply
(A=7kV, f=145 Hz,
sine profile)



Biological model: Arabidopsis seed dormancy

At harvest Arabidopsis seeds are dormant

No/low germination at 23°C in the dark

Dormant seeds
100 A %___9#:%=Q=Q=Q_
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Dry after ripening
weeks-months
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The mechanisms of seed dormancy alleviation in the dry state (anhydrobiosis) are poorly known: can be studied

Leymarie et al., Plant Cell Physiol, (2012)

by using plasmas



Dormancy alleviation by CAP treatment
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CAP treatments release Arabidopsis seed dormancy within 1a min
The efficiency of the CAP treatment relies on seed ML and cytoplasmic viscosity

August et al. (2023) J of Physics D



What are the biological processes triggering this change of seed physiology (alleviation of
dormancy)
How can plasmas have an effect in anhydrobiosis 7

- Structural changes (change of seed physical structure)

- Binlogical changes: oxidative processes and gene expression



|. Effect of CAP on seed physical properties

X-ray microtomography on the ANATOMIX beamline of SOLEIL synchrotron (Orsay, France)

Seed Cross Sections

30 reconstruction




2. Effect of CAP on seed biological properties

CAP alter oxidative processes within seeds: the oxidative control of seed germination
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2. Effect of CAP on seed biological properties

Evaluation of ROS in embryos by confocal microscopy
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ROS fluorescence with DCFH-DA

CAP induced ROS accumulation within dry seeds : confirmed the role of ROS in the
release of dormancy in anhydrobiosis




2. Effect of CAP on seed biological properties
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Conclusion

e deed dormancy release by cold plasmas is linked with structural changes, oxidative
processes and gene requlation

e [ranscriptomic analysis allowed to highlight the biological processes triggered by
plasma on seed dormancy release and confirmed role of ROS and oxygen in plasma

FESPONSE

e [pportunity to determine molecular markers and pathways related to plasma
treatment, that can be used to evaluate its efficiency

e [ur results should help improving the use of CAP treatments on crop species



To sum-up

Mechanisms of seed germination are far from being all known and climate change issues
require a better knowledge of this process

Plasma treatments are promising techniques for improving seed germination but
they will require:

- an adaptation of techniques (scale-up)

- better interactions between physicists and seed biologists
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