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ENGAGING WITH SOCIETY BY ASKING THE BIG QUESTIONS




World-Class Science and Engineering

— 1,960 professor-researchers
— 19,600 students
— +80 |aboratories

— Polytech-Sorbonne
engineering school

—> 4 pceanic observatories
on three coasts and in Paris

—> 2 institutes: Astrophysics of Paris
and Henri Poincare

* Both basic and applied research:
 Mathematics, Computer Sciences

and Engineering
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Created in the 70’s

Species studied: wheat, corn, rapeseed, sunflower, barley, oat,
tomato, pepper, bean, lettuce, pea, carrot, leek, onion,....

More than 500 publications in seed biology

Actual research:

Signaling role of reactive oxygen
species

&

Role of post-transcriptional
mechanisms

in the regulation of seed germination
and dormancy




Seed germination: the
most critical stage In
plant life ?



Seed germination:

- Major developmental change in plants, permits obtaining a young growing plant from a quiescent seed

- Completed with the appearance of the embryo through the seed surrounding structure(s)

- Tightly requlated by external (light, temperature, oxygen) and internal (plant hormones: abscisic acid (ABA) and

gibberrelins (GA)) factors
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Light
Temperature
Oxygen
Water

1. perception

Hormones

Ca2+

Kinases etc

Cell wall loosening
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Factors of germination:
Water, oxygen, temperature, light
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Seed dormancy: a beneficial
trait that alters ability to
germinate



Environmental factors

Water Temperature Light

(soil water potential)

Oxygen
Dry seed E] \ /

Endogenous factors é
/! N

Embryo Envelopes

Germination

Quiescence: impossibility to Dormancy:. impossibility to germinate
germinate because environmental even when environmental conditions are
conditions are unappropriate (not apparently favourable.

enough water, temperature too low Germination is possible, but in narrow

or too high, anoxia,).. conditions



Seed dormancy characteristics

Dormancy regulates germination, but it can led to false
Interpretations of seed batch quality

Dormancy, whether it comes from the embryo or the envelopes,
IS most often a relative phenomenon, expressed or not
depending on the conditions under which the seed is placed.

A dormant seed germinates only in very specific conditions,
while a non-dormant seed is much less sensitive to
environmental factors.

The elimination of dormancy results in an enlargement of the
conditions which ensure good germination.



Embryo dormancy alleviation:

Widening of the range of temperature and oxygen
content of the atmosphere allowing germination

Cold stratification (imbibition at low temperature)
Dry after-ripening
Warm stratification (imbibition at high temperature)

Treatment of imbibed seeds with with A, ethylene, cyanide, alcohal, smoke...



Examples of primary dormancy and alleviation during dry storage
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Seed quality and success
of germination: a challenge
for seed industry



WHAT ARE HIGH QUALITY SEEDS ?

They are seeds :

1 - which germinate all
2 - which germinate quickly
3 - which give rise to normal and vigorous seedlings
4 - which are little sensitive to external factors (temperature,
oxygen availability, water potential of the sail, ...),
and then which germinate
in a wide range of environmental conditions

5 - which can be easily stored

For seed companies a major
challenge toward improving crop
yield is a better control of seed
vigor



- Developmental
conditions

- Health treatments

- Position on the plant

- Maturity state
- Dormancy

- Size

- Health state
- efc

Pre-
harvest

factors

Factors

at
harvest
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Post-harvest
factors :

Environmental
factors at sowing

Drying

Cleaning, sorting
Health treatments
Storage conditions
etc



HOW TO EVALUATE SEED QUALITY ?

VIABILITY - Germination in optimal conditions
(ISTA tests)

- Germination rate (homogeneity, T, ...)
- Germination in non optimal conditions :
bermination at non gptimal temperature

bermination in hypoxia
Sensitivity to water potential of the medium

Sensitivity to various stresses (chilling, cold test, ....)

STORABILITY - Sensitivity to ageing (accelerated ageing or

controlled deterioration)
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Climate change: impacts are diverse

Adverse impacts from human-caused
climate change will continue to intensify

a) Observed widespread and substantial impacts and
related losses and damages attributed to climate change

ood production Health and well-being

©000

Agriculture/ Aningsl and  Fisheries Infectious Heat, Mental Displacement
crop liygstock  vyields and diseases  malnutrition  health
availabilit\, production hgffithand aquaculture and harm
oductivity production from wildfire

Biodiversity and ecosystems
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Inland Floo.d./.storm Damages

W Damkages Terrestrial ~ Freshwater  Ocean
flooding and  induced to infra- to key ecosystems  ecosystems ecosystems
associated damagesin  structure  economic ,

damages coastal areas sectors Includes changes in ecosystem structure,

species ranges and seasonal timing

IPCC, 2021

Key

Observed increase in climate impacts
to human systems and ecosystems
assessed at global level

‘ Adverse impacts

. Adverse and positive impacts

‘ Climate-driven changes observed,
no global assessment of impact direction

Confidence in attribution
to climate change
««+ High or very high confidence
«+ Medium confidence
* Llow confidence



Average growing season temperatures are modified by climate change

Fig. 2: Growing season temperatures and temperature trends.
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Projected climate change 2040-2069 in Europe

Northern Europe

Southern Europe
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Mitig Adapt Strateg Glob Change (2010) 15:657-679
DOI 10.1007/511027-010-9219-0
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agriculture in response to climatic change and variability

.

-
'

o

Marco Moriondo - Marco Bindi - Zbigniew W. Kundzewicz - M. Szwed -
A. Chorynski « P. Matczak + M. Radziejewski - D. McEvoy + Anita Wreford

YPONNsaw0O
;oo ol
Wy Ny = O
DOWANG -0

Fig. 4 Average seasonal change in temperature (°C) simulated by HadCM3 for the period 2030-2060 with
respect to the relevant baseline 1975-2005. Legend: 1=winter (DJF); 2=spring (MAM); 3=summer (JJA);
4=autumn (SON)



Climate change and seed biology

Erratic precipitations

Drought
Flooding
Thermal stress

Flowering phenology
Seed development
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Climate change will directly trigger the regulation
of seed germination factors

During germination:

Water Temperature Light

(soil water potential) ﬂxygen
Dry seed E \ /

Bermination

But also before germination.... because seed germinability results from a multifactorial
combination of b X E cues




Germinability: a multifactorial combination of G X E cues

Endosperm
weakening p.gicle
Imbibition emergence

Seed
water
content

Water content or rupture [%]
ABA content (relative values)

Temp. Water O,:

Development of Dormancy GxE

K Graeber, K Nakabayashi, and G Leubner-Metzger, Royal Holloway University of London, Egham, UK
© 2017 Elsevier Ltd. All rights reserved.



Germinability: a multifactorial combination of G X E cues
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Germinability: a multifactorial combination of G X E cues
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Environmental effects on seed development
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Furopean Project EEUSEEd

Impacts of Environmental conditions on Seed (uality

Helianthus annuus

Brassica Hordeum vulgare

oleracea

Dedicated to unravelling the effects on seed quality of the stresses predicted to occur more frequently due to
n climate change:
w2 SCIENCES
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%
R v, Effect of temperature regime on Arabidopsis thaliana seeds

Arabidopsis mother plant treatments: temperature

Standard conditions: plants were grown at 18/22 °C (8 h night / 16 h day)

<~ Elevated/lower temperature: plants were grown at [8/22 °C (8 h night / |6 h day) until flowering, then the
temperature regimes were changed to lower or higher temperatures than the controls (14/16 or 25/28°C)
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SORBONNE
UNIVERSITE



Effect of temperature regime on Arabidopsis thaliana seeds

<> Plant stature, silique size and seed yield decrease with increasing temperature
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Effect of temperature regime on Arabidopsis thaliana seeds
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Effects of increasing temperature on seed quality

<~ With increasing temperature: (less seeds per silique), lower yield, fewer useable seeds (seeds < Zall
mm produced at 20/28 °C were misshapen and not viable)

<> At the highest temperature, less but larger seeds were produced
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Temperature effect on germination and hormone contents
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With increasing temperature:
<> Reduction of seed dormancy
<> Reduction of ABA contents in dry seed
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Environmental effect on sunflower seed dormancy
A study in two spanish areas

One genetics, several batches, two locations
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Environmental effects on seed germination
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Effect of water stress on seed germination

conditions: 20° C 0; -0.4; -0.6; -0.8; -1 and -1.2 MPa (polyethylene glycol)
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Effect of thermal (cold) stress on seed germination
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Effect of hypoxia (flooding) on seed germination
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Environmental factors altered by
climate change are the ones that
requlate germination

Expected: poor stand
establishment, low yields




How to address negative effects of
environmental changes on seed
germination?



Genetics: identify the responsible genetic factors or underlying genes
associated to seed dormancy and germination under adverse environmental
conditions

Table 1 List of genes and molecular markers associated with abiotic stress identified in field crops

Field Desired Conditions/
crop trait Associated gene/QTL Gene description Comments

Wheat Tolerance to  TraesCS5A02G022100, GATA transcription factor (TF), RING/ Putative candidate

drought TraesCS5B02G014200 U-box superfamily protein and genes associated to
and Glutathione S-transferase (GST) QTL involved in the
TraesCS5D02G563900 drought tolerance at
the germination stage
Preharvest MKK3 MAP kinase activity protein Putative gene of seed
sprouting dormancy in QTL
Phy1
Ta-MFT Phosphatidylethanolamine-binding Gene resides in the
protein seed dormancy QTL
QPhs.ocs-3A.1
Barley Preharvest  AlaAT Alanine aminotransferase protein Causal gene of seed
sprouting dormancy in QTLs
Qsd1
MKK3 MAP kinase activity protein Causal gene of seed
dormancy in QTLs
Qsd2-AK
Tolerance to  HORVUBGHr1G008640, Catalase 1, Catalase 3, heat shock QTL at chromosome
drought HORVUG6Hr1G008730, 70 kDa protein C and AP2-like 6H associated with
HORVUGB6Hr1G008880 and  ethylene-responsive TF germination
HORVUG6Hr1G008880 percentage related
traits

Impact of climate perturbations on seeds and seed
quality for global agriculture

Christophe Bailly and Maria Mctoria Gomez Roldan



Changes to production methods : date of sowing . shift of crops northward

B 0-025
B 0.25-05
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1-125
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Fig. 7 Relative change in crop yield of sunflower (subfigure a), soybean (subfigure b), Spring wheat
i ) . . . (subfigure ¢) and durum wheat (subfigure d) in a +2°C scenario considering an advanced sowing with
Fig. 6 Relative change in crop yield of sunﬂower (subfigure 'a), s'oybean (subfigure b), Spnng wheat respect to the present period. The relative change is calculated with respect to the same +2°C scenario
(subfigure ¢) and durum wheat (subfigure d) in a +2°C scenario with respect to the present period, not without adaptation

considering adaptation strategies

Mitig Adapt Strateg Glob Change (2010) 15:657-679
DOI 10.1007/511027-010-9219-0

ORIGINAL ARTICLE

Impact and adaptation opportunities for European
agriculture in response to climatic change and variability

Marco Moriondo - Marco Bindi - Zbigniew W. Kundzewicz - M. Szwed -
A. Chorynski - P. Matczak + M. Radziejewski - D. McEvoy - Anita Wreford
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lternati\ig
Aseeds
How to address this issue ?

An example of strategy to stimulate maize
seed germination in cold conditions

|dentification of markers of tolerance/sensivity of maize seeds to
cold conditions at the germination stage
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Bayer CropScience
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Agrqqxlmg Institut du végéral
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23 hybrids / 3 qualities (Q1, Q2, Q3) : a genetic component in seed tolerance to
cold

5°C
100 100 | 100
80 80 | 80
60 60 | 60
40 40 | 40
20 20 | 20
0 ' 0 0
10
vigour
v8.Ql V14.Q1 vi1.Q1 V12.Q3 v9.Q1 vi3.Q1 vi.Ql v7.Q1 v10.Q1 v19.Q1
¢(T)(50%)
(°h) 988 893 872 814 740 694 664 637 635 573
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Metabolomics

Germination at 10°C
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Changes to production methods : irrigation

Sunflower seed vigour: SUNRISE project

Context: Sunflower a strategic crop in France and Europe
Climate change: - 20 % yield in 2100 in France
SUNRISE: effect of drought stress on sunflower

Our objectives: Investigate the effects of drought stress during
sunflower seed development on seed vigour of the progeny

Seeds produced on Heliaphen (INRAe Toulouse)
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Experimental design
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Water stress
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Biostimulants of seed germination to improve stand establishment
in adverse conditions

Ex: sunflower, germination under cold and water stress

Stress sensitive variety Stress tolerant variety
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Endophytes as sources of novel biostimulants

Microorganisms (fungi, bacteria) living in tissus of the host plant without causing apparent damages
(# epiphytes, pathogens)

Paositive effects on plant fitness

 Plant growth promation
A -  Enhanced tolerance to diseases
' .  Mitigation of abiotic stresses

Chemical mediation (binactive metabalites)
* Exploitation of new biologically-active
molecules
o |dentification of new modes of action

g\\\
Al

Fungl

Promising and currently under-explored sources for innovative solutions in agriculture

Investigating the potential of fungal endophyte and their derived for seed trait
improvement



|dentifiying fungal endophyte binactive chemicals impacting seed germination

_ Arabidopsis thalianaas a model Search for FEEs improving or
Fungal endophyte extract (FEEs) collections (dicot weed/rapeseed relative) inhibiting of seed
germination

Collaboration
Pr S. Prado
MNHN, Paris
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Fungal extracts

=

T2 FEEs analyzed
13 exhibit stimulatory activity
4 exhibit inhibitory activity

> Effect on crop or weed seed germination
> Effect on germination under penalizing
conditions

Seed fungal endophytes

as biostimulants and
biocontrol agents to
improve seed performance




Seed technology: seed priming

Seeds imbibed in water
Imbibition Activation Growth

{

Seed water content

7

Seed priming

Variable period
of priming

Variable

storage

¥

Imbibitionl Activation Growth blocked
Seed imbibed in osmotic solution (priming)

A~

yDehydration

period of

Imbibition

4

Growth

Time

© 2006 Gerhard Leubner - The Seed Biology Place - http://www.seedbiology.de - Redrawn/modified from:
Bradford KJ, Bewley JD (2002). Seeds: Biology, Technology and Role in Agriculture, Chapter 9, pp. 210-239,
In: Plants, Genes and Crop Biotechnology (eds Chrispeels MJ, Sadava DE), Jones and Bartlett, Boston.



Novel methods for improving seed germination: use of cold-plasmas in
seed biology

Plasma is an ionized gas.

It is also known as the 4" state of matter.
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Cold atmospheric plasma (CAP), "dry" approach

Thierry Dufour
Physics of Plasma Lab

Dielectric cover
HV electrode (mesh
Dielectric barrier

Reactor volume
(seeds & plasma)

Grounded electrode

Duration the treatment: [3 min, dry seeds
Peak amplitude of the voltage : 7kV at 145 Hz
Power (LB W

Patented, 2022




CAP treatment stimulates seed vigour

100
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10

Germination (%)

Temps (jours)
——C-06
—O0—P1-0,6

C-0,8
—0—P1-0,8

control plasmas

22 d after sowing in water stress conditions
(30 % field capacity, greenhouse)

Lena Taras, PhD



Additionnaly Plasmas eliminate seed pathogens and are an alternative to chemicals

Sunflower

White cabbage

Control
(t=0min)

Plasma
15 min

Plasma




Expected consequences of climate change on seed physiology

= Alteration of dormancy at

Climate change effects on temperature and moisture harvest
l Smddomm),I = [hanges in kinetics of
= # I T dormancy release
& mass =>|  Seed germination |
Input/output of .
‘1, \l, seeds into/from soil = Poor stand establishment
Seedling emergence
(both timing & guantity) \ * Modification of soil seed
v v bank dynamics (weeds)
Seed dispersal Seedling survivorship Soil seed bank
Seedling growth formation

Yy @ 2

Change population size and structure
Desynchronize life cycle events
Modify competitive interactions

Alter distributional ranges
Vary species richness/diversity

A better understanding of seed biology
is required to insure crop productivity
and dynamics of plants populations in

ecosystems under a changing climate

Climate change and plant regeneration from seed

JEFFREY L. WALCK*, SITIN. HIDAYATI* KINGSLEY W. DIXON+f KEN THOMPSON§ and
PETER POSCHLODY
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