

Chemistry in Plasma Treated Liquids

A. von Keudell

Experimental Physics II, Ruhr University Bochum

1 **Chemistry in Plasma Treated Liquids** | A. von Keudell et al.

The plasma liquid interface

P J Bruggeman et al 2016 Plasma Sources Sci. Technol. 25 053002

2 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

Plasma in liquid chemistry in a nutshell

primary species in the plasma

 $0 + 0_2 \rightarrow 0_3$ $2 H_2O \rightarrow 2 OH + H_2$ $2 \text{ OH} \rightarrow \text{H}_2\text{O}_2$ RONS $O_2 + N \rightarrow NO + O$ Henry $O + N_2 \rightarrow NO + N$ constants determine transfer Zeldovich mechanism

primary species in the liquid

ROS OH H_2O_2 peroxide O₃ O₂ozone superoxide $H_2O_2 + O_3 \rightarrow HO_2 + OH + O_2$ $HO_2 + OH^- \rightarrow O_2^- + H_2O$ RNS NO $NO_2 \rightarrow NO_2^-$ nitrite $NO_3 \rightarrow NO_3^-$ nitrate $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_2 + H_2O_2 \rightarrow NO_3 + H_2O_3$

RUHR

UNIVERSITÄT BOCHUM

3

Plasma in liquid chemistry in a nutshell – chemistry modeling

[188] Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G and Kong M G 2014 A model of plasma-biofilm and plasma-tissue interactions at ambient pressure *Plasma Chem. Plasma Process.* 34 403–41

$$H_2O_2 + O_3 \rightarrow HO_2 + OH + O_2$$
$$HO_2 + OH^- \rightarrow O_2^- + H_2O$$

Plasma activated water – PAW, change in reactivity

Wartel, M., Faubert, F., Dirlau, I. D., Rudz, S., Pellerin, N., Astanei, D., Burlica, R., Hnatiuc, B., & Pellerin, S. (2021). Analysis of plasma activated water by gliding arc at atmospheric pressure: Effect of the chemical composition of water on the activation. *Journal of Applied Physics*, 129(23), 233301. https://doi.org/10.1063/5. 0040035

$$NO + O_3 \rightarrow NO_2 + O_2$$

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$

$$NO_2 + H_2O_2 \rightarrow NO_3 + H_2O_2$$

[488] Lukes P, Dolezalova E, Sisrova I and Clupek M 2014 Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-secondorder post-discharge reaction of H₂O₂ and HNO₂ Plasma Source Sci. Technol. 23 015019

Possible plasma arrangements of plasma in liquids

Plasma above the liquid (liquid electrode) \rightarrow RONS

Plasma inside the liquid $\rightarrow ROS$

6 **Chemistry in Plasma Treated Liquids** | A. von Keudell et al.

: Renwu Zhou et al 2020 J. Phys. D: Appl. Phys. 53 303001

Solvated electrons in liquids induced by plasmas

Nature Communications (2015) P. Rumbach, D. Bartels, M. Sankaran, D. Go, doi 6:7248 | DOI: 10.1038/ncomms8248

Nanosecond plasmas

- Short nanosecond pulses
- Pulses too short for formation of a gas bubble
- · Plasma ignition inside the liquid

Extremely high pressures and temperatures 10000 bar, 50000 K

Microsecond plasmas

- Long microsecond pulses
- Initial formation of a gas bubble due to Ohmic heating or Efield rupture
- Plasma ignition inside the water vapor in the bubble

Moderate high pressures and temperatures 10 bar, 20000 K

- 10 ns pulses, 14...30 kV, distilled water
- Shadowgraphy 2 ns ... 70 ns gate widths
- Optical emission spectroscopy with 2ns and 30 ns gate time

Goals:

- reactive liquid production
- regeneration of catalysts for plasma enhanced electrolysis

Temporal evolution of the discharge

4 phases

• Ignition (Streamer)

- Pressure waves propagate
- Conversion of water into plasma and vapor
- Expansion of a cavitation bubble

Temporal evolution of the discharge

H alpha emission after the plasma pulse

60 ns gate, 30 ns steps

Monitoring Bubble Expansion with Shadowgraphy – monitoring sound waves and cavitation

UNIVERSITÄT BOCHUM

Chemistry in Plasma Treated Liquids | A. von Keudell et al. 12

Comparison of Bubble Expansion with cavitation theory

Rayleigh Plesset equation:

$$R\ddot{R}\left(1-\frac{\dot{R}}{c}\right) + \frac{3}{2}\dot{R}^{2}\left(1-\frac{\dot{R}}{3c}\right) = h\left(1+\frac{\dot{R}}{c}\right) + \left(1-\frac{\dot{R}}{c}\right)\frac{R}{c}\frac{\partial h}{\partial t}$$

R

UNIVERSITÄT

Solution for R(t) assuming a compressible liquid and condensation of vapor species

RUHR

UNIVERSITÄT BOCHUM IВ

UNIVERSITÄT

Plasma in a bubble expansion

UNIVERSITÄT

Temperatures from emission spectra of the plasma into the UV

Spectrum (first 50 ns, time resolution 2 ns)

- Recombination
- H₂, H₂O recomb. continuum
- OH, OH⁺, H_2O , H_2O^+ bands ٠
- Black body radiation (W)
- H_{α}

Line emission – Ionization front propagates Hydrogen Balmer Series

self absorption of Halpha from the ionization region disappears, ionization front steepens

Efficiency to create H_2O_2 with these plasmas Modeling the chemistry _

- Starting point gas density 3 x 10²² cm⁻³
- Starting Temperature T = 20000 K
- H_2O_2/H_2O ratio at 10 µs ~ 10^{-2}

*S. Mededovic, B. Locke JPD 40, 7734 (2007) PCPP 32, 875 (2012)

In the expanding phase, chemistry freezes out, $H_2O \rightarrow H_2O_2 + H_2 + O + H_2$

Efficiency to create H_2O_2 with these plasmas Modeling the chemistry

- Take T₀ from cavitation
- calculate time development of the chemistry until 10 µs
- determine H₂O₂ concentration after 10 µs in the model

efficiency 1.1% @ 20 kV (20000 K)

 At high voltages/T₀, contribution due to sonochemistry becomes significant

46 g H₂O₂/kWh (most other plasma methods only a few g/kWh)

UNIVERSITÄT BOCHUM

²Biocatalysis (Bandow group @ RUB)

advantages of enzymatic reactions

- mild conditions
- less by-products / waste
- chemo- and stereo-selectivity

advantages of plasma

- easily turned on/off
 - H₂O₂ is also toxic for enzymes
- non-invasive
- not increasing the reaction volume

21 **Chemistry in Plasma Treated Liquids** | A. von Keudell et al.

Biocatalysis (Bandow

UNIVERSITÄT

Different plasma sources (Bandow, Golda, Gibson group @ RUB)

DBD

Capillary jet

gas feed electrode plasma capillary ETBE buffer rotating bed reactor

Capillary jet, rotating bead reactor

Yayci et al. (2020) ChemSusChem.

Plasma driven biocatalysis (group Bandow @ RUB)

RUHR

BOCHUM

UNIVERSITÄT

Plasma driven biocatalysis (group Bandow @ RUB)

RUHR

BOCHUM

UNIVERSITÄT

²⁶ Diffusion of OH and convective transport (Golda group @ RUB)

CL of luminol

- \rightarrow Main signal at the liquid surface
- Decrease in CL signal deeper than 2.5 mm
- OH is mainly distributed at the liquid surface

- PIV measurements → Visualization of convective transport
- Enhanced convective transport at higher gas flow rates
- At 0.5 slm and lower → Almost no convective transport

Plasma driven biocatalysis (group Benedikt @ RUB)

Species	Calibration
H ₂ O	H ₂ O
H ₂ O ₂	Ar
ОН	-
0	-
O ₂	Ar
Н	-
H ₂	H ₂
HO ₂	Ar

Dissertation Gert Willems, Ruhr-University Bochum (2016)

Plasma driven biocatalysis (group Golda, Gibson @ RUB)

Plasma effluent modeling with 100s of reactands and several 100s of reactions

Agreement only within a factor of 10

Plasma driven biocatalysis (group Gibson @ RUB)

RUHR

BOCHUM

UNIVERSITÄT

UΒ

Conclusion

plasmas in liquids for life science applications

- Plasma-in-liquids are very efficient, avoiding RONS and H2O2 decay. Physics is extremely complex
- Plasma above the liquid suffer from transfer (Henry constant). More applications.
- Plasmas act as a on-demand source for H2O2
- Design of the perfect plasma source for bio application is crucial, right 'dose" of reactive species

RUHR

UNIVERSITÄT BOCHUM **Backup Slides**

31 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

Line emission – H alpha from ionization region of Hydrogen Balmer Series

RUHR

BOCHUM

UNIVERSITÄT

UВ

Line emission – H alpha from ionization region of Hydrogen Balmer Series

- H alpha from ionization region dominates when electrons are being accelerated
- Strong gradients in the beginning
- Field emission at the end of the pulse

RUHR

UNIVERSITÄT BOCHUM UВ

Temperatures from N2 SPS as thermometer for the later stages

Line identification

- H_{α} , H_{β}
- O 777
- N2 SPS form N2 intrusion
- Bands of OH, H2O hard to detect

Temperatures from N2 SPS as thermometer for the later stages

For 20 kV Experiment

UNIVERSITÄT BOCHUM

Temperatures from spectroscopies

T from cavitation theory

Cooling during expansion depends on VV, VT, VR relaxation times.

Usually T_{rot} decouples from T_{vib} In chemical non-equilibrium expanding flows

BOCHUM

Non-equilibrium in expanding ns plasmas

Ttr

M. Nichida, M. Matsumoto, Verlag d. Zeitung f. Naturforschung 0932-0784 (1997)

Tvib,N2

Tvib.Oz

J. D. Anderson, Report Naval Ordonance Labatory (1969)

Solution for R(t) assuming a compressible liquid

$$r\frac{Dh}{Dt} + ru\frac{Du}{Dt} + (c+u)\left(h + \frac{u^2}{2}\right) + rc\frac{\partial h}{\partial r} + rcu\frac{\partial u}{\partial r} = 0$$
 velocities
with momentum and mass conservation

$$\frac{Du}{Dt} = -\frac{\partial h}{\partial r}$$

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2u\right) = -\frac{1}{\rho}\frac{d\rho}{dt}$$

$$p_{\infty} \qquad p(r) \qquad p_{R} \qquad R \qquad dR \qquad dr$$

$$p_{\infty} \qquad p(r) \qquad p_{R} \qquad R \qquad dR \qquad dr$$

$$p_{\infty} \qquad p(r) \qquad p_{R} \qquad R \qquad dR \qquad dr$$

$$p_{\alpha} \qquad p(r) \qquad p_{\alpha} \qquad R \qquad dR \qquad dr$$

$$p_{\alpha} \qquad p(r) \qquad p_{\alpha} \qquad p(r) \qquad p_{\alpha} \qquad R \qquad dR \qquad dr$$

$$r\frac{Du}{Dt}\left(1 - \frac{u}{c}\right) + \frac{3}{2}u^2\left(1 - \frac{u}{3c}\right) = h\left(1 + \frac{u}{c}\right) + r\frac{\partial h}{\partial t}\frac{1}{c}\left(1 - \frac{u}{c}\right) \qquad \text{sound speeds}$$

$$R\ddot{R}\left(1 - \frac{\dot{R}}{c}\right) + \frac{3}{2}\dot{R}^2\left(1 - \frac{\dot{R}}{3c}\right) = h\left(1 + \frac{\dot{R}}{c}\right) + \left(1 - \frac{\dot{R}}{c}\right)\frac{R}{c}\frac{\partial h}{\partial t} \qquad c_{\infty}$$

RUHR UNIVERSITÄT

BOCHUM

RUB

Solution for R(t) assuming a compressible liquid

momentum balance equation (no Navier Stokes)

$$\frac{\partial}{\partial t} \left(- \vec{\nabla} \phi \right) + (\vec{u} \cdot \vec{\nabla}) \vec{u} = - \frac{\nabla p}{\rho}$$

Integrate over r

 $-\frac{\partial\phi}{\partial t} + \frac{1}{2}\vec{u}^2 = \int_{p_{\infty}}^{p(r)} -\frac{\mathrm{d}p}{\rho}$

definition enthalpy

$$h = \int_{p_{\infty}}^{p(r)} -\frac{\mathrm{d}p}{\rho} \qquad h = \frac{n}{n-1} \frac{1}{\rho_0} (B+p_{\infty}) \left[\left(\frac{p_{liquid}(R)+B}{B+p_{\infty}} \right)^{\frac{n-1}{n}} - 1 \right] \qquad \mathsf{c(r)}$$

p∞

pressure

p(r)

results in Bernoulli equation

$$\frac{\partial \phi}{\partial t} = h + \frac{1}{2}\vec{u}^2$$

RUHR UNIVERSITÄT BOCHUM

sound speeds

velocities

u(r)

dr

์U(R)

dR

C∞

R

 \mathbf{p}_{R}

Example 2: Plasma Chemistry in liquids – example H₂O₂ generation

- 10 ns pulses, 14...30 kV, distilled water
- Shadowgraphy 2 ns ... 70 ns gate widths
- Optical emission spectroscopy with 2ns and 30 ns gate time

Nanosecond plasma based recovery of CuO nanocubes at copper electrodes

20 kV

26 kV

dist. Water + 0.0035M KCl

Creation of Cu-nanocubes possible, if

- no direct current to the sample, reduction of the oxide, plasma electrode distance to the sample important
- Cl necessary as nucleation sites
- Competition between oxidation due to H_2O_2 , OH and reduction by H, e⁻

dist. Water + 0.0035M KCl

1111 10 M Mg 10 M Mg 11

P. Grosse, B. Roldan et al.

Reference plasma based low pressure creation of CuO nanocubes

distilled water

Efficiency to create H_2O_2 with these plasmas Modeling the chemistry

- Taking H₂O chemistry from spark plasma simulation*
- Taking the evolution of the temperature from cavitation theory

			JPD 40, 7734 (2007)
			PCPP 32, 875 (2012)
Denetion		an a	
Reaction		1	rate coemcient
H ₂ O reactions	. H . OH . M	2000 2000 17	1 5 0 10 9 ((0000(pm) 1)
$H_2O + M$	\rightarrow H + OH + M	2000-6000 K	$\kappa_{21} = 5.8 \cdot 10^{-3} \exp[-440000(RT)^{-4}]$
O ₂ reactions			
$O_2 + M$	$\rightarrow O + O + M$	200-10000 K	$k_{27} = 1.99 \cdot 10^{-10} \exp[-9500(RT)^{-1}]$
OH reactions			
OH + M	\rightarrow H + O + M	300-2500 K	$k_{22} = 4.09 \cdot 10^{-9} \exp[-416000(RT)^{-1}]$
OH + OH	\rightarrow H ₂ O + O	250-300 K	$k_{29} = 1.02 \cdot 10^{-12} (T/298)^{1.4} \exp[1660(RT)^{-1}]$
O + OH	$\rightarrow O_2 + H$	250-5000 K	$k_{61} = 4.55 \cdot 10^{-12} (T/298)^{0.4} \cdot \exp[3090(RT)^{-1}]$
OH + H	$\rightarrow H_2O$	300-2100 K	$k_{62} = 2.69 \cdot 10^{-10} \exp[-620(RT)^{-1}]$
H + OH	$\rightarrow O + H_2$	300-2500 K	$k_{63} = 6.68 \cdot 10^{-14} (T/298)^{2.8} \cdot \exp[-16210(RT)^{-1}]$
$H_2O_2 + OH$	$\rightarrow HO_2 + H_2O$	300-2500 K	$k_{64} = 2.91 \cdot 10^{-12} \cdot \exp[-1330(RT)^{-1}]$
$O_2 + OH$	$\rightarrow HO_2 + O$	300-2500 K	$k_{85} = 3.7 \cdot 10^{-11} \cdot \exp[-220000(RT)^{-1}]$
OH + OH	$\rightarrow H_2O_2$	300-1500 K	$k_{66} = 1.51 \cdot 10^{-11} (T/298)^{-0.37}$
OH + OH	$\rightarrow 2 \text{ O} + 2 \text{H}$	300-2500 K	$k_{67} = 4.09 \cdot 10^{-9} \cdot \exp[-416000(RT)^{-1}]$
H ₂ O ₂ reactions			
$H_2O_2 + O$	$\rightarrow HO_2 + OH$	300-2500 K	$k_{68} = 1.42 \cdot 10^{-12} (T/298)^2 \exp[-16631(RT)^{-1}]$
$H_2O_2 + H$	$\rightarrow OH + H_2O$	300-2500 K	$k_{89} = 4.01 \cdot 10^{-11} \exp[-16630(RT)^{-1}]$
$H_2O_2 + H$	$\rightarrow HO_2 + H_2$	300-2500 K	$k_{610} = 8 \cdot 10^{-11} \exp[-33260(RT)^{-1}]$
$H_2O_2 + O_2$	$\rightarrow 2 \text{ HO}_2$	300-2500 K	$k_{611} = 9 \cdot 10^{-11} \exp[-166000(RT)^{-1}]$
HO ₂ reactions			
$HO_2 + OH$	\rightarrow H ₂ O + O ₂	300-2000 K	$k_{612} = 4.81 \cdot 10^{-11} \exp[2080(RT)^{-1}]$
$HO_2 + O$	$\rightarrow OH + O_2$	300-2500 K	$k_{613} = 2.91 \cdot 10^{-11} \exp[-1660(RT)^{-1}]$
$HO_2 + H$	$\rightarrow 2 \text{ OH}$	300-2500 K	$k_{614} = 2.81 \cdot 10^{-10} \exp[-3660(RT)^{-1}]$
$HO_2 + H$	\rightarrow H ₂ + O ₂	300-2500 K	$k_{615} = 1.1 \cdot 10^{-10} \exp[-8900(RT)^{-1}]$
$HO_2 + HO_2$	\rightarrow H ₂ O ₂ + O ₂	300-2500 K	$k_{616} = 3.01 \cdot 10^{-12}$
$HO_2 + H_2$	$\rightarrow H_2O_2 + H$	300-2500 K	$k_{617} = 5 \cdot 10^{-11} \exp[-109000(RT)^{-1}]$
$HO_2 + M$	$\rightarrow O_2 + H + M$	300-2200 K	$k_{618} = 2.41 \cdot 10^{-8} (T/298)^{-1.18} \exp[-2031000 (RT)^{-1}]$
H reactions			
O + H + M	$\rightarrow OH + M$	300-2500 K	$k_{619} = 4.36 \cdot 10^{-32} (T/298)^{-1}$
H + H + M	$\rightarrow M + H_2$	300-2500 K	$k_{620} = 6.04 \cdot 10^{-33} (T/298)^{-1}$
$O_2 + H$	$\rightarrow OH + O$	500-2000 K	$k_{821} = 2.94 \cdot 10^{-10} \exp[-69680(RT)^{-1}]$
$O_2 + H + M$	$\rightarrow HO_2 + M$	200-2200 K	$k_{622} = 1.94 \cdot 10^{-32} (T/298)^{-1}$
H ₂ reactions			
$H_2 + M$	\rightarrow H + H + M	2500-8000 K	$k_{25} = 1.5 \cdot 10^{-9} \exp[-402000(RT)^{-1}]$
$OH + H_2$	$\rightarrow H_2O + H$	200-2400 K	$k_{823} = 2.97 \cdot 10^{-12} (T/298)^{1.21} \exp[-19710(RT)^{-1}]$
$O + H_2$	$\rightarrow OH + H$	300-2500 K	$k_{824} = 3.44 \cdot 10^{-13} (T/298)^{2.67} \exp[-26270(RT)^{-1}]$
O reactions			
0 + 0 + M	$\rightarrow O_2 + M$	200-4000 K	$k_{825} = 5.21 \cdot 10^{-35} \exp[7480(RT)^{-1}]$
$O + H_2O$	$\rightarrow OH + OH$	300-2000 K	$k_{626} = 6.68 \cdot 10^{-13} (T/298)^{2.60} \exp[-63520(RT)^{-1}]$

*S. Mededovic, B. Locke

Dissipated energy during plasma ignition within the first 10 ns – comparison to experiments

UNIVERSITÄT BOCHUM

Streamer velocities in distilled water

Figure 15. Average streamer propagation velocity v_{av} versus voltage in distilled water [52]. d = 3 cm, $r_p = 1 \mu \text{m}$.

Lesaint et al. JPD 49 144001 (2016) Starikovsky et al. PSST 20, 24003 (2011)

Propagation velocity of streamer in liquids (long pulses) 3 km/s ... 100 km/s in 10 ns $\Delta x = 3 \ \mu m \ ... 0.1 \ mm$ Propagation velocity of streamer in liquids (short pulses) 1000...5000 km/s in 10 ns $\Delta x = 1 \ mm \ ... 5 \ mm$

Comparison Streamer in air ~ 1000 km/s

Plasma pulse from field ionization to field emisison (gate time 2 ns, 22 kV)

UNIVERSITÄT BOCHUM

Current and Voltage signals for 10 ns 20 kV pulses using the 8.65 m cable

IB

UNIVERSITÄT BOCHUM

Tungsten vs. Titanium* tip (500 µm tip radius vs. 50 µm tip radius)

Spark 5..10 µs 3 J

*P. Lukes et al. PSST 20, 3401 (2011)

- 1.5 x 10⁷ J/m²
- similar energy per m² dissipated
- Sequence of melting and solidification

thermal conductivity @ 1000 °C melting temp.

- Ti 22 W/m K, 2000 K
- W 115 W/m K, 3700 K
- Pt 82 W/m K, 2500 K
- In case of W only small melting tips (for Pt, T, larger molten areas)
- similar to cathode spot in lamps

ns pulse 10 ns 0.03 J 1.5 x 10⁷ J/m²

Sequence of the propagating discharge

53 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

RUHR UNIVERSITÄT BOCHUM

Comparison to cathode spots at high pressure lamps

(d) $i_{\rm arc} = 15.0 \, {\rm A}$

@500 A on a 2 µm radius spot= magnetic field pressure of 1 Gpa

Pinch effects at W tips

A. Bergner et al. PSST 23, 054005 (2014)

Temperatures from emission spectra of the plasma

UNIVERSITÄT

BOCHUM

Temperatures from emission spectra of the plasma

- Power absorption at the beginning of the pulse and due to reversal of the voltage
- Black body radiation, followed by $1/\lambda^x$ spectrum.

For 20 kV Experiment

T₀ < 8000 K @ 0 ns

Tungsten tip

- Long term operation possible
- W as high melting temperature 3700 K
- W therm. conduct. 115 W / m K
- W oxidizes, melting temperature 1800 K
- Crystallites are formed

Short term use, < 7 h

long term use, ~ 30 h

Platinum / Iridium tip (from AFM/SEM microscopes with 5..10 nm tip radius)

- Only short term operation
 possible
- After 1 h no plasma ignition
 possible anymore
- Pt melting temperature 2100 K
- Pt thermal conduct.
 82 W/ m K
- Ir melting temperature 2700 K
- only Ir oxidizes

Dissipated energy during plasma ignition within the first 10 ns – comparison to experiments

UNIVERSITÄT BOCHUM

Nature of the $1/\lambda^x$ background in emission – cathode spots on the tungsten electrode

initial scales with the dissipated energy

UNIVERSITÄT

BOCHUM

UNIVERSITÄT

BOCHUM

Solution for R(t) assuming a compressible liquid and condensation of vapor species

RUHR

UNIVERSITÄT BOCHUM IВ

Plasma in a bubble expansion

UNIVERSITÄT

BOCHUM

How does the plasma Ignites ?

Experiment 22kV, 1Hz, distilled water, t_{gate}=2ns, t_{step}=2ns

How does the plasma Ignites ? Experiment 22kV, 1Hz, distilled water, t_{gate}=2ns, t_{step}=2ns

68 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

69 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

UNIVERSITÄT BOCHUM

How does the plasma Ignites ?

Experiment 22kV, 1Hz, distilled water, t_{gate}=2ns, t_{step}=2ns

71 Chemistry in Plasma Treated Liquids | A. von Keudell et al.

Tungsten tip vs. Platinum/Iridium tip

- W as high melting temperature 3700 K
- W therm. conduct.
 115 W / m K
- W oxidizes, Crystallites are formed
- Pt melting temperature 2100 K
- Pt thermal conduct.
 82 W/ m K
- Ir melting temperature 2700 K

Permanent operation possible

Ignition stops after 1 h of operation

Temperatures from emission spectra of the plasma into the UV

Spectrum (first 50 ns, time resolution 2 ns)

- Recombination
- H_2 , H_2O recomb. continuum
- OH, OH⁺, H₂O, H₂O⁺ bands
- Black body radiation (W)

• O(777nm)

Temperatures from emission spectra of the plasma UV part

Spectrum (first 50 ns, time resolution 2 ns)

- Recombination
- H_2 , H_2O recomb. continuum
- OH, OH⁺, H_2O , H_2O^+ bands ٠
- Black body radiation (W)
- H_{α}
- **O**(777nm)

OH

2.0x10⁶

OH+

H₂O

H,

 H_2O^+

data

T1 = 7600 K

T2 = 20000 K

Nature of the $1/\lambda^x$ background in emission

Possible sources for $1/\lambda^x$ background

- H₂O, H₂ recombination background (300...500 nm, no part down to 250 nm)
- $1/\lambda^2$ recombination radiation free-free, bound-free
- $1/\lambda^5$ long wavelength part of the emission of a hot cathode spot

initial droplet R=1µm

Tsventoukh, Phys. Plasmas 25, 53504 (2018)

Coulomb-explosion of the neck leads to metal plasma (10 µm diameter, n_e ~10²⁶ m⁻³,)

Cathode spots at W tips

A. Bergner et al. PSST 23, 054005 (2014)

Line emission – Hydrogen Balmer Series

- H Balmer lines clearly visible
- Why is Hy more pronounced than H α ?

Line emission – Selfabsorption of Hydrogen Balmer Series

BOCHUM

Nature of the $1/\lambda^x$ background in emission – cathode spots on the tungsten electrode

Three contributions

- Continuum blackbody ~ 6000 7000 K
- H Balmer strong self absorption recombination region (Hγ dominates)
- H Balmer small self absorption ionization region (H α dominates)

Chemistry in Plasma Treated Liquids | A. von Keudell et al. 79

Efficiency to create H_2O_2 with these plasmas Modeling the chemistry

UNIVERSITÄT BOCHUM

Nanosecond plasma based recovery of CuO nanocubes at copper electrodes

20 kV

dist. Water + 0.0035M KCl

Creation of Cu-nanocubes possible, if

- no direct current to the sample, reduction of the oxide, plasma electrode distance to the sample important
- Competition between oxidation due to H₂O₂, OH and reduction by H, e⁻

dist. Water + 0.0035M KCl

P. Grosse, B. Roldan et al.

Reference plasma based low pressure creation of CuO nanocubes

distilled water

distilled water

Nature of the $1/\lambda^x$ background in emission – cathode spots on the tungsten electrode

RUHR

BOCHUM

UNIVERSITÄT

RUB

Line emission – Electron densities from Stark broadening of Hydrogen Balmer Series

electron density from Stark broadening

- n_e follows directly voltage (no delay as in ns air plasmas) ionization and recombination on ps time scales at liquid densities)
- decay follows the voltage

ionization degree ~ 10⁻³

Efficiency to create H_2O_2 with these plasmas Measurement of the concentration with a colorimetric kit

UNIVERSITÄT BOCHUM

Biocatalysis

- use of H_2O_2 -dependent enzymes \rightarrow oxidoreductases
- redox reaction \rightarrow one substrate reduced, one oxidized

peroxygenases: $H_2O_2 + AH \rightarrow A-OH + H_2O$

• industrial application is limited \rightarrow excess of H₂O₂ leads to suicide inactivation

unspecific peroxygenase of *Agrocybe* aegerita (AaeUPO) (PDB: 5OXU)

